Zotavit

Zotavit Uses, Dosage, Side Effects, Food Interaction and all others data.

vitamin C, the water-soluble vitamin, is readily absorbed from the gastrointestinal tract and is widely distributed in the body tissues. It is believed to be involved in biological oxidations and reductions used in cellular respiration. It is essential for the synthesis of collagen and intracellular material. Vitamin C deficiency develops when the dietary intake is inadequate and when increased demand is not fulfilled. Deficiency leads to the development of well defined syndrome known as scurvy, which is characterized by capillary fragility, bleeding (especially from small blood vessels and the gums), anaemia, cartilage and bone lesions and slow healing of wounds.

Ascorbic Acid (vitamin C) is a water-soluble vitamin indicated for the prevention and treatment of scurvy, as ascorbic acid deficiency results in scurvy. Collagenous structures are primarily affected, and lesions develop in bones and blood vessels. Administration of ascorbic acid completely reverses the symptoms of ascorbic acid deficiency.

Lycopene is a naturally occuring red carotenoid pigment that is responsible in red to pink colors seen in tomatoes, pink grapefruit, and other foods . Having a chemical formula of C40H56, lycopene is a tetraterpene assembled from eight isoprene units that are solely composed of carbon and hydrogen. Lycophene may undergo extensive isomerization that allows 1056 theoretical cis-trans configurations; however the all-trans configuration of lycopene is the most predominant isomer found in foods that gives the red hue. Lycopene is a non-essential human nutrient that is classified as a non-provitamin A carotenoid pigment since it lacks a terminal beta ionone ring and does not mediate vitamin A activity. However lycophene is a potent antioxidant molecule that scavenges reactive oxygen species (ROS) singlet oxygen. Tomato lycopene extract is used as a color additive in food products.

Selenium is a trace metal in the human body particularly important as a component of glutathione peroxidase, an important enzyme in the prevention of cellular damage by free radicals and reactive oxygen species

Selenium is incorporated into many different selenoproteins which serve various functions throughout the body .

Vitamin A plays an essential role in the function of retina and is essential for growh and differentiation of epithelial tissue.

Vitamin A is effective for the treatment of Vitamin A deficiency. Vitamin A refers to a group of fat-soluble substances that are structurally related to and possess the biological activity of the parent substance of the group called all-trans retinol or retinol. Vitamin A plays vital roles in vision, epithelial differentiation, growth, reproduction, pattern formation during embryogenesis, bone development, hematopoiesis and brain development. It is also important for the maintenance of the proper functioning of the immune system.

A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with anemia, short stature, hypogonadism, impaired wound healing, and geophagia. It is identified by the symbol Zn .

A newer study suggests implies that an imbalance of zinc is associated with the neuronal damage associated with traumatic brain injury, stroke, and seizures .

Understanding the mechanisms that control brain zinc homeostasis is, therefore, imperative to the development of preventive and treatment regimens for these and other neurological disorders .

Trade Name Zotavit
Generic Ascorbic Acid + Lycopene + Selenium + Vitamin A + Zinc
Weight vit c
Type Capsule
Therapeutic Class
Manufacturer Zota Pharmaceuticals
Available Country India
Last Updated: September 19, 2023 at 7:00 am
Zotavit
Zotavit

Uses

Vitamin C is used for prevention and treatment of scurvy. It may be used for pregnancy, lactation, infection, trauma, burns, cold exposure, following surgery, fever, stress, peptic ulcer, cancer, methaemoglobinaemia and in infants receiving unfortified formulas. It is also prescribed for haematuria, dental caries, pyorrhea, acne, infertility, atherosclerosis, fractures, leg ulcers, hay fever, vascular thrombosis prevention, levodopa toxicity, succinyl-choline toxicity, arsenic toxicity etc. To reduce the risk of stroke in the elderly, long-term supplementation with Vitamin C is essential.

Lycopene is an ingredient found in a variety of supplements and vitamins.

Selenium is an ingredient found in a variety of supplements and vitamins.

For the supplementation of total parenteral nutrition to prevent hyposelenemia .

Effective for:

  • Vitamin A deficiency. Taking vitamin A by mouth is effective for preventing and treating symptoms of vitamin A deficiency. Vitamin A deficiency can occur in people with protein deficiency, diabetes, over-active thyroid, fever, liver disease, cystic fibrosis, or an inherited disorder called abetalipoproteinemia.

Possibly Effective for:

  • Breast cancer. Premenopausal women with a family history of breast cancer who consume high levels of vitamin A in their diet seem to have reduced risk of developing breast cancer. It is not known if taking vitamin A supplements has the same benefit.
  • Cataracts. Research suggests that high intake of vitamin A in the diet is linked to a lower risk of developing cataracts.
  • Diarrhea related to HIV. Taking vitamin A along with conventional medicines seems to decrease the risk of death from diarrhea in HIV-positive children with vitamin A deficiency.
  • Malaria. Taking vitamin A by mouth seems to decrease malaria symptoms in children less than 3 years-old living in areas where malaria is common.
  • Measles. Taking vitamin A by mouth seems to reduce the risk of measles complications or death in children with measles and vitamin A deficiency.
  • Precancerous lesions in the mouth (oral leukoplakia). Research suggests that taking vitamin A can help treat precancerous lesions in the mouth.
  • Recovery from laser eye surgery (photoreactive keratectomy). Taking vitamin A by mouth along with vitamin E seems to improve healing after laser eye surgery.
  • Complications after pregnancy. Taking vitamin A seems to reduce the risk of diarrhea and fever after pregnancy in malnourished women.
  • Complications during pregnancy. Taking vitamin A by mouth seems to reduce the risk of death and night blindness during pregnancy in malnourished women.
  • Eye disease affecting the retina (retinitis pigmentosa). Research suggests that taking vitamin A can slow the progression of an eye disease that causes damage to the retina.

Zinc is an essential element commonly used for the treatment of patients with documented zinc deficiency.

Zinc can be used for the treatment and prevention of zinc deficiency/its consequences, including stunted growth and acute diarrhea in children, and slowed wound healing. It is also utilized for boosting the immune system, treating the common cold and recurrent ear infections, as well as preventing lower respiratory tract infections .

Zotavit is also used to associated treatment for these conditions: Common Cold, Deficiency, Vitamin A, Deficiency, Vitamin D, Fever, Flu caused by Influenza, Folate deficiency, Iron Deficiency (ID), Iron Deficiency Anemia (IDA), Oral bacterial infection, Scurvy, Vitamin C Deficiency, Vitamin Deficiency, Nutritional supplementation, Vitamin supplementationNutritional supplementationNutritional supplementationDeficiency, Vitamin A, Deficiency, Vitamin D, Degenerative Retinal Disorders, Disorder of the Epithelium, Disorder of the Mesoderm, Inner ear disorder, Vitamin Deficiency, Vitamin E Deficiency, Nutritional supplementationCandidiasis, Common Cold, Diaper Dermatitis, Diaper Rash, Eye redness, Iron Deficiency (ID), Ocular Irritation, Skin Irritation, Sunburn, Wilson's Disease, Zinc Deficiency, Dietary and Nutritional Therapies, Dietary supplementation

How Zotavit works

In humans, an exogenous source of ascorbic acid is required for collagen formation and tissue repair by acting as a cofactor in the posttranslational formation of 4-hydroxyproline in -Xaa-Pro-Gly- sequences in collagens and other proteins. Ascorbic acid is reversibly oxidized to dehydroascorbic acid in the body. These two forms of the vitamin are believed to be important in oxidation-reduction reactions. The vitamin is involved in tyrosine metabolism, conversion of folic acid to folinic acid, carbohydrate metabolism, synthesis of lipids and proteins, iron metabolism, resistance to infections, and cellular respiration.

Selenium is first metabolized to selenophosphate and selenocysteine. Selenium incorporation is genetically encoded through the RNA sequence UGA . This sequence is recognized by RNA ste loop structures called selenocysteine inserting sequences (SECIS). These structures require the binding of SECIS binding proteins (SBP-2) to recognize selenocystiene. The specialized tRNA is first bound to a serine residue which is then enzymatically processed to a selylcysteyl-tRNA by selenocystiene sythase using selenophosphate as a selenium donor. Other unidentified proteins are required as part of the binding of this tRNA to the ribosome. Selenoproteins appear to be necessary for life as mice with the specialized tRNA gene knocked out exhibited early embryonic lethality .

The most important selenoproteins seem to be the glutathione peroxidases and thioredoxin reductases which are part of the body's defenses againts reactive oxygen species (ROS) . The importance of selenium in these anti-oxidant proteins has been implicated in the reduction of atherosclerosis by preventing the oxidation of low density lipoprotein . Selenium supplementation is also being investigated in the prevention of cancer and has been suggested to be beneficial to immune function .

Vision:Vitamin A (all-trans retinol) is converted in the retina to the 11-cis-isomer of retinaldehyde or 11-cis-retinal. 11-cis-retinal functions in the retina in the transduction of light into the neural signals necessary for vision. 11-cis-retinal, while attached to opsin in rhodopsin is isomerized to all-trans-retinal by light. This is the event that triggers the nerve impulse to the brain which allows for the perception of light. All-trans-retinal is then released from opsin and reduced to all-trans-retinol. All-trans-retinol is isomerized to 11-cis-retinol in the dark, and then oxidized to 11-cis-retinal. 11-cis-retinal recombines with opsin to re-form rhodopsin. Night blindness or defective vision at low illumination results from a failure to re-synthesize 11-cis retinal rapidly.
Epithelial differentiation: The role of Vitamin A in epithelial differentiation, as well as in other physiological processes, involves the binding of Vitamin A to two families of nuclear retinoid receptors (retinoic acid receptors, RARs; and retinoid-X receptors, RXRs). These receptors function as ligand-activated transcription factors that modulate gene transcription. When there is not enough Vitamin A to bind these receptors, natural cell differentiation and growth are interrupted.

Zinc has three primary biological roles: catalytic, structural, and regulatory. The catalytic and structural role of zinc is well established, and there are various noteworthy reviews on these functions. For example, zinc is a structural constituent in numerous proteins, inclusive of growth factors, cytokines, receptors, enzymes, and transcription factors for different cellular signaling pathways. It is implicated in numerous cellular processes as a cofactor for approximately 3000 human proteins including enzymes, nuclear factors, and hormones .

Zinc promotes resistance to epithelial apoptosis through cell protection (cytoprotection) against reactive oxygen species and bacterial toxins, likely through the antioxidant activity of the cysteine-rich metallothioneins .

In HL-60 cells (promyelocytic leukemia cell line), zinc enhances the up-regulation of A20 mRNA, which, via TRAF pathway, decreases NF-kappaB activation, leading to decreased gene expression and generation of tumor necrosis factor-alpha (TNF-alpha), IL-1beta, and IL-8 .

There are several mechanisms of action of zinc on acute diarrhea. Various mechanisms are specific to the gastrointestinal system: zinc restores mucosal barrier integrity and enterocyte brush-border enzyme activity, it promotes the production of antibodies and circulating lymphocytes against intestinal pathogens, and has a direct effect on ion channels, acting as a potassium channel blocker of adenosine 3-5-cyclic monophosphate-mediated chlorine secretion. Cochrane researchers examined the evidence available up to 30 September 2016 .

Zinc deficiency in humans decreases the activity of serum thymulin (a hormone of the thymus), which is necessary for the maturation of T-helper cells. T-helper 1 (Th(1)) cytokines are decreased but T-helper 2 (Th(2)) cytokines are not affected by zinc deficiency in humans [A342417].

The change of Th(1) to Th(2) function leads to cell-mediated immune dysfunction. Because IL-2 production (Th(1) cytokine) is decreased, this causes decreased activity of natural-killer-cell (NK cell) and T cytolytic cells, normally involved in killing viruses, bacteria, and malignant cells [A3424].

In humans, zinc deficiency may lead to the generation of new CD4+ T cells, produced in the thymus. In cell culture studies (HUT-78, a Th(0) human malignant lymphoblastoid cell line), as a result of zinc deficiency, nuclear factor-kappaB (NF-kappaB) activation, phosphorylation of IkappaB, and binding of NF-kappaB to DNA are decreased and this results in decreased Th(1) cytokine production .

In another study, zinc supplementation in human subjects suppressed the gene expression and production of pro-inflammatory cytokines and decreased oxidative stress markers [A3424]. In HL-60 cells (a human pro-myelocytic leukemia cell line), zinc deficiency increased the levels of TNF-alpha, IL-1beta, and IL-8 cytokines and mRNA. In such cells, zinc was found to induce A20, a zinc finger protein that inhibited NF-kappaB activation by the tumor necrosis factor receptor-associated factor pathway. This process decreased gene expression of pro-inflammatory cytokines and oxidative stress markers .

The exact mechanism of zinc in acne treatment is poorly understood. However, zinc is considered to act directly on microbial inflammatory equilibrium and facilitate antibiotic absorption when used in combination with other agents. Topical zinc alone as well as in combination with other agents may be efficacious because of its anti-inflammatory activity and ability to reduce P. acnes bacteria by the inhibition of P. acnes lipases and free fatty acid levels .

Dosage

Zotavit dosage

vitamin C is usually administered orally. When oral administration is not feasible or when malabsorption is suspected, the drug may be administered IM, IV, or subcutaneously. When given parenterally, utilization of the vitamin reportedly is best after IM administration and that is the preferred parenteral route.

For intravenous injection, dilution into a large volume parenteral such as Normal Saline, Water for Injection, or Glucose is recommended to minimize the adverse reactions associated with intravenous injection.

The average protective dose of vitamin C for adults is 70 to 150 mg daily. In the presence of scurvy, doses of 300 mg to 1 g daily are recommended. However, as much as 6 g has been administered parenterally to normal adults without evidence of toxicity.

To enhance wound healing, doses of 300 to 500 mg daily for a week or ten days both preoperatively and postoperatively are generally considered adequate, although considerably larger amounts have been recommended. In the treatment of burns, doses are governed by the extent of tissue injury. For severe burns, daily doses of 1 to 2 g are recommended. In other conditions in which the need for vitamin C is increased, three to five times the daily optimum allowances appear to be adequate.

Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever the solution and container permit.

Vitamin A deficiency For severe deficiency with corneal changes: 500,000 unit/day for 3 days, followed by 50,000 unit/day for 2 wk and then 10,000-20,000 unit/day for 2 mth as follow-up therapy.

For cases without corneal changes: 10,000-25,000 unit/day until clinical improvement occurs (usually 1 -2 wk).

Side Effects

Ascorbic acid does not seem to have any important adverse effects at dosages less than 4 mg/day. Larger dose may cause diarrhoea or formation of renal calculi of calcium oxalate in patients with renal impairment. Ingestion of more than 600 mg daily have a diuretic action.

Hypervitaminosis A characterised by fatigue, irritability, anorexia, weight loss, vomiting and other Gl disturbances, low-grade fever, hepatosplenomegaly, skin changes, alopoecia, dry hair, cracking and bleeding lips, SC swelling, nocturia, pains in bones and joints.

Toxicity

Oral LD50 of 6700mg/kg in rats . Selenium exposure is teratogenic and can result in fetal death as tested in mice. Chronic toxicity is characterized by hair loss, white horizontal streaking on fingernails, paronchyia, fatigue, irritability, hyperreflexia, nausea, vomiting, garlic odor on breath, and metallic taste . Serum selenium correlates weakly with symtoms. Blood chemistry as well as liver and kidney function are normally unnaffected. Acute toxicity presents as stupor, respiratory depression, and hypotension. ST elevations and t-wave changes characteristic of myocardial infarction may be observed.

Acute toxicity to vitamin A can occur when adults or children ingest >100x or >20x the RDA, respectively, over a period of hours or a few days. The RDA for vitamin A differs depending on age and sex and can range from 300 - 900 μg retinol activity equivalents (RAE) per day. Symptoms of acute systemic toxicity generally include mucocutaneous involvement (e.g. xerosis, cheilitis, skin peeling) and may involve mental status changes. Children are typically more susceptible to acute vitamin A toxicity - daily intakes of as little as 1500 IU/kg have been observed to result in toxicity.

Chronic vitamin A toxicity can develop following the long-term ingestion of high vitamin A doses. While there is a wide variation in the lowest toxic vitamin A dose, the ingestion of >25 000 IU daily for 6 years or 100,000 IU daily for 6 months is considered to be toxic. Chronic vitamin A toxicity can affect many organ systems and can lead to the development of osteoporosis and CNS effects (e.g. headaches).

According to the Toxnet database of the U.S. National Library of Medicine, the oral LD50 for zinc is close to 3 g/kg body weight, more than 10-fold higher than cadmium and 50-fold higher than mercury .

The LD50 values of several zinc compounds (ranging from 186 to 623 mg zinc/kg/day) have been measured in rats and mice .

Precaution

Ingestion of megadose (more than 1000 mg daily) of vitamin C during pregnancy has resulted in scurvy in neonates. Vitamin C in mega-doses has been contraindicated for patients with hyperoxaluria. Vitamin C itself is a reactive substance in the redox system and can give rise to false positive reactions in certain analytical tests for glucose, uric acid, creatine and occult blood.

Cholestatic jaundice; fat-malabsorption conditions. Monitor patients closely for toxicity. Liver impairment and children.

Interaction

Potentially hazardous interactions: Ascorbic acid is incompatible in solution with aminophylline, bleomycin, erythromycin, lactobionate, nafcillin, nitrofurantoin sodium, conjugated oestrogen, sodium bicarbonate, sulphafurazole diethanolamine, chloramphenicol sodium succinate, chlorthiazide sodium and hydrocortisone sodium succinate.

Useful interactions: Ascorbic acid increases the apparent half-life of paracetamol and enhances iron absorption from the gastrointestinal tract.

Decreased absorption with neomycin. Increased risk of hypervitaminosis A with synthetic retinoids eg, acitretin, isotretinoin and tretinoin. Increased risk of toxicity when used with alcohol.

Volume of Distribution

A pharmacokinetic study was done in rats to determine the distribution and other metabolic indexes of zinc in two particle sizes. It was found that zinc particles were mainly distributed to organs including the liver, lung, and kidney within 72 hours without any significant difference being found according to particle size or rat gender .

Elimination Route

70% to 90%

Oral bioavailability of 90% when given as L-selenomethionine . Tmax of 9.17h.

Readily absorbed from the normal gastrointestinal tract

Zinc is absorbed in the small intestine by a carrier-mediated mechanism . Under regular physiologic conditions, transport processes of uptake do not saturate. The exact amount of zinc absorbed is difficult to determine because zinc is secreted into the gut. Zinc administered in aqueous solutions to fasting subjects is absorbed quite efficiently (at a rate of 60-70%), however, absorption from solid diets is less efficient and varies greatly, dependent on zinc content and diet composition .

Generally, 33% is considered to be the average zinc absorption in humans . More recent studies have determined different absorption rates for various populations based on their type of diet and phytate to zinc molar ratio. Zinc absorption is concentration dependent and increases linearly with dietary zinc up to a maximum rate [L20902].

Additionally zinc status may influence zinc absorption. Zinc-deprived humans absorb this element with increased efficiency, whereas humans on a high-zinc diet show a reduced efficiency of absorption .

Half Life

16 days (3.4 hours in people who have excess levels of vitamin C)

Half life was observed to increase with chronic dosing time . For day 1-2 half life was 1.7 days. For day 2-3 half life was 3 days. For day 3-14 half life was 11.1 days.

1.9 hours

The half-life of zinc in humans is approximately 280 days .

Clearance

In one study of healthy patients, the clearance of zinc was found to be 0.63 ± 0.39 μg/min .

Elimination Route

Mainly excreted in urine as 1beta-methylseleno-N-acetyl-d-galactosamine and trimethylselenonium . The amount excreted as 1beta-methylseleno-N-acetyl-d-galactosamine plateaus at doses around 2microg after which the amount excreted as trimethylselenonium increases. Some selenium is also excreted in feces when given orally .

The excretion of zinc through gastrointestinal tract accounts for approximately one-half of all zinc eliminated from the body .

Considerable amounts of zinc are secreted through both biliary and intestinal secretions, however most is reabsorbed. This is an important process in the regulation of zinc balance. Other routes of zinc excretion include both urine and surface losses (sloughed skin, hair, sweat) .

Zinc has been shown to induce intestinal metallothionein, which combines zinc and copper in the intestine and prevents their serosal surface transfer. Intestinal cells are sloughed with approximately a 6-day turnover, and the metallothionein-bound copper and zinc are lost in the stool and are thus not absorbed .

Measurements in humans of endogenous intestinal zinc have primarily been made as fecal excretion; this suggests that the amounts excreted are responsive to zinc intake, absorbed zinc and physiologic need .

In one study, elimination kinetics in rats showed that a small amount of ZnO nanoparticles was excreted via the urine, however, most of the nanoparticles were excreted via the feces .

Pregnancy & Breastfeeding use

The drug is safe in normal doses in pregnant women, but a daily intake of 5 gm or more is reported to have caused abortion. The drug may be taken safely during lactation.

Pregnancy Category A. Adequate and well-controlled human studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).

Contraindication

Hypervitaminosis A; pregnancy (dose exceeding RDA).

Storage Condition

Should be stored in a dry place below 30˚C.

Innovators Monograph

You find simplified version here Zotavit


*** Taking medicines without doctor's advice can cause long-term problems.
Share