Armacort
Armacort Uses, Dosage, Side Effects, Food Interaction and all others data.
Chloramphenicol inhibits bacterial protein synthesis by binding to 50s subunit of the bacterial ribosome, thus preventing peptide bond formation by peptidyl transferase. It has both bacteriostatic and bactericidal action against H. influenzae, N. meningitidis and S. pneumoniae.
Chloramphenicol is a broad-spectrum antibiotic that was derived from the bacterium Streptomyces venezuelae and is now produced synthetically. Chloramphenicol is effective against a wide variety of microorganisms, but due to serious side-effects (e.g., damage to the bone marrow, including aplastic anemia) in humans, it is usually reserved for the treatment of serious and life-threatening infections (e.g., typhoid fever). Chloramphenicol is bacteriostatic but may be bactericidal in high concentrations or when used against highly susceptible organisms. Chloramphenicol stops bacterial growth by binding to the bacterial ribosome (blocking peptidyl transferase) and inhibiting protein synthesis.
Hydrocortisone binds to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes. The anti-inflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. Specifically glucocorticoids induce lipocortin-1 (annexin-1) synthesis, which then binds to cell membranes preventing the phospholipase A2 from coming into contact with its substrate arachidonic acid. This leads to diminished eicosanoid production. The cyclooxygenase (both COX-1 and COX-2) expression is also suppressed, potentiating the effect. In other words, the two main products in inflammation Prostaglandins and Leukotrienes are inhibited by the action of Glucocorticoids. Glucocorticoids also stimulate the lipocortin-1 escaping to the extracellular space, where it binds to the leukocyte membrane receptors and inhibits various inflammatory events: epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines etc.) from neutrophils, macrophages and mastocytes. Additionally the immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding.
Hydrocortisone is the most important human glucocorticoid. It is essential for life and regulates or supports a variety of important cardiovascular, metabolic, immunologic and homeostatic functions. Topical hydrocortisone is used for its anti-inflammatory or immunosuppressive properties to treat inflammation due to corticosteroid-responsive dermatoses. Glucocorticoids are a class of steroid hormones characterised by an ability to bind with the cortisol receptor and trigger a variety of important cardiovascular, metabolic, immunologic and homeostatic effects. Glucocorticoids are distinguished from mineralocorticoids and sex steroids by having different receptors, target cells, and effects. Technically, the term corticosteroid refers to both glucocorticoids and mineralocorticoids, but is often used as a synonym for glucocorticoid. Glucocorticoids suppress cell-mediated immunity. They act by inhibiting genes that code for the cytokines IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8 and TNF-alpha, the most important of which is the IL-2. Reduced cytokine production limits T cell proliferation. Glucocorticoids also suppress humoral immunity, causing B cells to express lower amounts of IL-2 and IL-2 receptors. This diminishes both B cell clonal expansion and antibody synthesis. The diminished amounts of IL-2 also leads to fewer T lymphocyte cells being activated.
Trade Name | Armacort |
Generic | Chloramphenicol + Hydrocortisone acetate |
Weight | 20mg, 25mg |
Type | Cream |
Therapeutic Class | |
Manufacturer | PT Ifars |
Available Country | Indonesia |
Last Updated: | September 19, 2023 at 7:00 am |
Uses
Chloramphenicol is used for Ocular infections, Bacterial meningitis, Anaerobic bacterial infections, Anthrax, Brain abscess, Ehrlichiosis, Gas gangrene, Granuloma inguinale, Infections caused by H. influenzae, Listeriosis, Plague, Psittacosis, Q fever, Severe gastroenteritis, Severe melioidosis, Severe systemic infections with Camphylobacter fetus, Tularaemia, Whipple's disease, Otitis externa
Hydrocortisone Acetate is used for:
- Primary irritant dermatitis
- Contact allergic dermatitis
- Eczema: atopic, infantile, discoid, stasis
- Seborrheic dermatitis
- Lichen simplex and pruritus ani
- Flexural psoriasis
- Skin irritations, itching and rashes, for example those caused by insect bites, minor thermal burns, sunburn, etc
Armacort is also used to associated treatment for these conditions: Acne, Bacterial Conjunctivitis, Bacterial Conjunctivitis caused by susceptible bacteria, Bacterial Infections, Bacterial dacryocystitis, Bacterial diarrhoea, Conjunctivitis allergic, Corneal Inflammation, Eye swelling, Keratitis bacterial, Ocular Inflammation, Trachoma, Anterior eye segment inflammation, Bacterial blepharitis, Bacterial corneal ulcers, Non-purulent ophthalmic infections caused by susceptible bacteria, Superficial ocular infections, Skin disinfectionAcute, Inflammatory Superficial Cutaneous Lesions caused by susceptible bacteria, Adrenal cortical hypofunctions, Anal Fissures, Anal inflammation, Androgenital syndrome, Conjunctivitis, Conjunctivitis allergic, Corneal Inflammation, Dermatitis infected, Diaper Dermatitis, Eczema infected, Episcleritis, Hemorrhoids, Iridocyclitis, Iritis, Ocular Inflammation, Ocular Irritation, Postoperative pain, Proctitis, Pruritus, Pruritus Ani, Radiation Induced Proctitis, Rheumatoid Arthritis, Scleritis, Skin Infections, Skin Irritation, Superficial ocular bacterial infections caused by susceptible bacteria, Thyroiditis, Ulcerative Colitis, Anal eczema, Bacterial blepharitis, Corneal clouding, Corticosteroid responsive Dermatosis of the anal region, Corticosteroid-responsive dermatoses, Cryptitis, Localized uninfected hemorrhoids, Mild Anal Fissures, Pruritus associated with bowel movements, Skin and skin-structure infections caused by susceptible bacteria, Postoperative Eye Care
How Armacort works
Chloramphenicol is lipid-soluble, allowing it to diffuse through the bacterial cell membrane. It then reversibly binds to the L16 protein of the 50S subunit of bacterial ribosomes, where transfer of amino acids to growing peptide chains is prevented (perhaps by suppression of peptidyl transferase activity), thus inhibiting peptide bond formation and subsequent protein synthesis.
Hydrocortisone binds to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes. The anti-inflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. Specifically glucocorticoids induce lipocortin-1 (annexin-1) synthesis, which then binds to cell membranes preventing the phospholipase A2 from coming into contact with its substrate arachidonic acid. This leads to diminished eicosanoid production. The cyclooxygenase (both COX-1 and COX-2) expression is also suppressed, potentiating the effect. In other words, the two main products in inflammation Prostaglandins and Leukotrienes are inhibited by the action of Glucocorticoids. Glucocorticoids also stimulate the lipocortin-1 escaping to the extracellular space, where it binds to the leukocyte membrane receptors and inhibits various inflammatory events: epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines etc.) from neutrophils, macrophages and mastocytes. Additionally the immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding.
Dosage
Armacort dosage
For Eye: Adults, children and infants (all age groups): One or two drops 4 to 6 times a day should be placed in the infected eyes. If necessary the frequency of dose can be increased. Treatment should be continued for approximately 7 days but should not be continued for more than three weeks without re-evaluation by the prescribing physician.
For Ear: 2 to 3 drops into ear canal thrice or four times daily.
Otic/Aural: Otitis externa:Instill 2-3 drops of a 5% solution into the ear bid-tid.
Oral:Bacterial meningitis, Anaerobic bacterial infections, Anthrax, Brain abscess, Ehrlichiosis, Gas gangrene, Granuloma inguinale, Infections caused by H. influenzae, Listeriosis, Plague, Psittacosis, Q fever, Severe gastroenteritis, Severe melioidosis, Severe systemic infections with Camphylobacter fetus, Tularaemia, Whipple's disease:
- Adult:50 mg/kg/day in 4 divided doses increased to 100 mg/kg/day for meningitis or severe infections due to moderately resistant organisms. Continue treatment after the patient's temperature has normalised for a further 4 days in rickettsial disease and 8-10 days in typhoid fever.
- Child:Premature and full-term neonates: 25 mg/kg/day in 4 divided doses. Full-term infants >2 wk: 50 mg/kg/day in 4 divided doses. Children: 50 mg/kg/day in 4 divided doses increased to 100 mg/kg/day for meningitis or severe infections.
Hydrocortisone cream should be applied in a thin smear to the affected area one to two times per day or as directed by the physician. The recommended duration of treatment is usually two weeks. For rectal use apply to the irritated anorectal tissue in the morning and at evening and after each bowel movement for two to six days.
Side Effects
Oral: GI symptoms; bleeding; peripheral and optic neuritis, visual impairment, blindness; encephalopathy, confusion, delirium, mental depression, headache. Haemolysis in patients with G6PD deficiency.
ophthalmic application: Hypersensitivity reactions including rashes, fever and angioedema.
Ear drops: Ototoxicity.
Hydrocortisone Acetate 1% cream is usually well-tolerated, but if signs of hypersensitivity appear, application should be stopped.
Toxicity
Oral, mouse: LD50 = 1500 mg/kg; Oral, rat: LD50 = 2500 mg/kg. Toxic reactions including fatalities have occurred in the premature and newborn; the signs and symptoms associated with these reactions have been referred to as the gray syndrome. Symptoms include (in order of appearance) abdominal distension with or without emesis, progressive pallid cyanosis, vasomotor collapse frequently accompanied by irregular respiration, and death within a few hours of onset of these symptoms.
Side effects include inhibition of bone formation, suppression of calcium absorption and delayed wound healing
Precaution
Impaired renal or hepatic function; premature and full-term neonates. Monitor plasma concentrations to avoid toxicity.
In infants and children, long-term continuous topical therapy should be avoided where possible, as adrenal suppression can occur. As with all corticosteroids, prolonged application to the face is undesirable.
Interaction
Decreased effects of iron and vitamin B12 in anaemic patients. Phenobarbitone and rifampin reduce efficacy of chloramphenicol. Impairs the action of oral contraceptives.
Elimination Route
Rapidly and completely absorbed from gastrointestinal tract following oral administration (bioavailability 80%). Well absorbed following intramuscular administration (bioavailability 70%). Intraocular and some systemic absorption also occurs after topical application to the eye.
Topical corticosteroids can be absorbed from normal intact skin. Inflammation and/or other disease processes in the skin increase percutaneous absorption.
Half Life
Half-life in adults with normal hepatic and renal function is 1.5 - 3.5 hours. In patients with impaired renal function half-life is 3 - 4 hours. In patients with severely impaired hepatic function half-life is 4.6 - 11.6 hours. Half-life in children 1 month to 16 years old is 3 - 6.5 hours, while half-life in infants 1 to 2 days old is 24 hours or longer and is highly variable, especially in low birth-weight infants.
6-8 hours
Elimination Route
Corticosteroids are metabolized primarily in the liver and are then excreted by the kidneys. Some of the topical corticosteroids and their metabolites are also excreted into the bile.
Pregnancy & Breastfeeding use
Pregnancy Category C. Either studies in animals have revealed adverse effects on the fetus (teratogenic or embryocidal or other) and there are no controlled studies in women or studies in women and animals are not available. Drugs should be given only if the potential benefit justifies the potential risk to the fetus.
There is inadequate evidence for safety in human pregnancy. It is recommended that topical corticosteroids should not be used extensively during pregnancy. It is highly unlikely that sufficiently high blood levels of Hydrocortisone are achieved during topical therapy to reach breast milk.
Contraindication
History of hypersensitivity or toxic reaction to the drug; pregnancy, lactation; porphyria; parenteral admin for minor infections or as prophylaxis; preexisting bone marrow depression or blood dyscrasias.
Contraindicated in infections (bacterial; viral; fungal), skin ulcers, hypersensitivity to the preparation
Acute Overdose
Acute overdosage is very unlikely to occur, however, in the case of chronic overdosage or misuse, the features of hypercorticism may appear and in this situation topical steroids should be discontinued
Storage Condition
Cap/susp: Store at temp not exceeding 30°C.
Ophth/otic preparation: Store between 2-8°C. Do not freeze. Protect from light.
Store in a cool and dry place, away from light. Keep out of reach of children.
Innovators Monograph
You find simplified version here Armacort