Hydrogen Uses, Dosage, Side Effects and more
A metallic element that has the atomic number 13, atomic symbol Al, and atomic weight 26.98.
Magnesium is classified as an alkaline earth metal and has 2 hydration shells. The element can be found in abundance in the hydrosphere and in mineral salts such as dolomite and magnesium carbonate.
Common dietary sources of magnesium include nuts (cashews, peanuts, almonds), beans, bananas, apples, carrots, broccoli, and leafy greens. Magnesium is an important enzyme cofactor and is essential to several metabolic processes. Further, the mineral helps regulate blood pressure and is necessary for RNA, DNA and protein synthesis among several other functions.
Despite the importance of magnesium and its availability via several food sources, an estimated 56 to 68% of adults who live in developed, western countries do not meet the recommended daily intake (RDI) of magnesium. Several factors and common behaviours reduce the availability of magnesium in the diet such as food processing and cooking vegetables (which are normally a rich source of magnesium).
Oxetacaine, also called oxethazaince, is a potent surface analgesic with the molecular formula N, N-bis-(N-methyl-N-phenyl-t-butyl-acetamide)-beta-hydroxyethylamine that conserves its unionized form at low pH levels. Its actions have shown to relieve dysphagia, relieve pain due to reflux, chronic gastritis, and duodenal ulcer. Oxetacaine is approved by Health Canada since 1995 for its use as an antacid combination in over-the-counter preparations. It is also in the list of approved derivatives of herbal products by the EMA.
Oxetacaine improves common gastrointestinal symptoms. Oxetacaine is part of the anesthetic antacids which increase the gastric pH while providing relief from pain for a longer period of duration at a lower dosage. This property has been reported to relieve the symptoms of hyperacidity. Oxetacaine is reported to produce a reversible loss of sensation and to provide a prompt and prolonged relief of pain. In vitro, oxetacaine was showed to produce an antispasmodic action on the smooth muscle and block the action of serotonin.
The local efficacy of oxetacaine has been proven to be 2000 times more potent than lignocaine and 500 times more potent than cocaine. Its anesthetic action produces the loss of sensation which can be explained by its inhibitory activity against the nerve impulses and de decrease in permeability of the cell membrane.
Trade Name | Hydrogen |
Generic | Aluminium + Magnesium + Oxetacaine |
Type | Gel |
Therapeutic Class | |
Manufacturer | Nutron Life Sciences |
Available Country | India |
Last Updated: | January 7, 2025 at 1:49 am |
Uses
Magnesium is a medication used for many purposes including constipation, indigestion, magnesium deficiency, and pre-eclampsia.
Healthy levels of magnesium can be achieved through a well balanced diet, but if food sources are insufficient, magnesium supplements can be used to prevent and treat magnesium deficiencies.
In medicine, various magnesium salts may be used in laxative and antacid products. For example, magnesium citrate is available over-the-counter and may be used to manage occasional constipation. Magnesium sulfate may be used on its own or with total parenteral nutrition to treat hypomagnesemia. Magnesium sulfate is also indicated to prevent seizures in pregnant women with pre-eclampsia, and to manage seizures associated with eclampsia.
Oxetacaine is an antacid used to treat gastritis, peptic ulcer disease, heartburn, esophagitis, hiatus hernia, and anorexia.
Oxetacaine is available as an over-the-counter antacid and it is used to alleviate pain associated with gastritis, peptic ulcer disease, heartburn, esophagitis, hiatus hernia, and anorexia.
Hydrogen is also used to associated treatment for these conditions: Calcium Deficiency, Magnesium Deficiency, Zinc DeficiencyAcid Reflux, Anal Fissures, Hemorrhoids, Proctitis, Pruritus Ani, Anal eczema
How Hydrogen works
Aluminum Acetate is an astringent. An astrignent is a chemical that tends to shrink or constrict body tissues, usually locally after topical medicinal application. The shrinkage or constriction is through osmotic flow of water (or other fluids) away from the area where the astringent was applied. Astringent medicines cause shrinkage of mucous membranes or exposed tissues and are often used internally to check discharge of blood serum or mucous secretions. This can happen with a sore throat, hemorrhages, diarrhea, or with peptic ulcers. Externally applied astringents, which cause mild coagulation of skin proteins, dry, harden, and protect the skin. Acne sufferers are often advised to use astringents if they have oily skin. Astringents also help heal stretch marks and other scars. Mild astringent solutions are used in the relief of such minor skin irritations as those resulting from superficial cuts, allergies, insect bites, or fungal infections such as athlete's foot.
Magnesium is a cofactor for at least 300 enzymes and is important for several functions in the body with some key processes identified below. Enzymes that rely on magnesium to operate help produce energy through oxidative phosphorylation, glycolysis and ATP metabolism. They are also involved in nerve function, muscle contraction, blood glucose control, hormone receptor binding, protein synthesis, cardiac excitability, blood pressure control, gating of calcium channels and transmembrane ion flux.
The mitochondrial intracellular space is rich in magnesium, since it is required to produce the active form of ATP (adenosine triphosphate) from ADP (adenosine diphosphate) and inorganic phosphate, and behaves as a counter ion for the energy rich molecule. Additionally, magnesium is essential for ATP metabolism.
Oxetacaine inhibits gastric acid secretion by suppressing gastrin secretion.
Moreover, oxetacaine exerts a local anesthetic effect on the gastric mucosa. This potent local anesthetic effect of oxetacaine may be explained by its unique chemical characteristics in which, as a weak base, it is relatively non-ionized in acidic solutions whereas its hydrochloride salt is soluble in organic solvents and it can penetrate cell membranes. Oxetacaine diminishes the conduction of sensory nerve impulses near the application site which in order reduces the permeability of the cell membrane to sodium ions. This activity is performed by the incorporation of the unionized form into the cell membrane.
Toxicity
The recommended dietary allowance of magnesium ranges from 30 mg for infants to 420 mg for males between the age of 31 and 50. According to the institute of Medicine (IOM), the majority of adults can tolerate 350 mg of magnesium per day without experiencing adverse effects. Symptoms of magnesium toxicity include diarrhea and other gastrointestinal effects, thirst, muscle weakness, drowsiness, severe back and pelvic pain, hypotension, dizziness, confusion, difficulty breathing, lethargy, and deterioration of kidney function. Other more severe symptoms associated with magnesium overdose include loss of consciousness, respiratory arrest, cardiac arrhythmias and cardiac arrest.
Regular use of laxatives containing magnesium may lead to severe and even fatal hypermagnesemia.
Discontinuation of magnesium products including supplements, laxatives, and antacids is usually sufficient to manage mild cases of magnesium overdose; however, patients should also be screened for renal impairment.
In severe cases of magnesium overdose, patients may require supportive care and interventions including intravenous fluids and furosemide, IV calcium chloride or calcium gluconate, renal dialysis and artificial respiratory support.
When orally administered, oxetacaine presents a good tolerance. However, following intravenous injection, oxetacaine toxicity is high and it is presented as a depression in myocardial contractility and impaired conduction.
Volume of Distribution
According to a pharmacokinetic review, the volume of distribution of magnesium sulphate when used to manage patients with pre-eclampsia and eclampsia ranged from 13.65 to 49.00 L.
This pharmacokinetic property has not been studied.
Elimination Route
Approximately 24-76% of ingested magnesium is absorbed in the gastrointestinal tract, primarily via passive paracellular absorption in the small intestine.
A peak plasma concentration of oxetacaine of approximately 20 ng/ml is attained about one hour after oral administration. LEss than 1/3 of the administered dose is absorbed as it undergoes extensive metabolism.
Half Life
Magnesiums biologic half-life is reported to be approximately 1000 hours or 42 days.
Oxetacaine presents a very short half-life of approximately one hour.
Clearance
This pharmacokinetic property has not been studied.
Elimination Route
The majority of magnesium is excreted renally.
Less than 0.1% of the amdinistered dose is recovered in urine within 24 hours in the form of unchanged oxetacaine or its metabolites.