Maxiton Uses, Dosage, Side Effects and more

A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk.

Biotin is a water-soluble B-complex vitamin which is composed of an ureido ring fused with a tetrahydrothiophene ring, which attaches a valeric acid substituent at one of its carbon atoms. Biotin is used in cell growth, the production of fatty acids, metabolism of fats, and amino acids. It plays a role in the Kreb cycle, which is the process in which energy is released from food. Biotin not only assists in various metabolic chemical conversions, but also helps with the transfer of carbon dioxide. Biotin is also helpful in maintaining a steady blood sugar level. Biotin is often recommended for strengthening hair and nails. Consequenty, it is found in many cosmetic and health products for the hair and skin. Biotin deficiency is a rare nutritional disorder caused by a deficiency of biotin. Initial symptoms of biotin deficiency include: Dry skin, Seborrheic dermatitis, Fungal infections, rashes including erythematous periorofacial macular rash, fine and brittle hair, and hair loss or total alopecia. If left untreated, neurological symptoms can develop, including mild depression, which may progress to profound lassitude and, eventually, to somnolence; changes in mental status, generalized muscular pains (myalgias), hyperesthesias and paresthesias. The treatment for biotin deficiency is to simply start taking some biotin supplements. A lack of biotin in infants will lead to a condition called seborrheic dermatitis or "cradle cap". Biotin deficiencies are extremely rare in adults but if it does occur, it will lead to anemia, depression, hair loss, high blood sugar levels, muscle pain, nausea, loss of appetite and inflamed mucous membranes.

Inositol is a collection of nine different stereoisomers but the name is usually used to describe only the most common type of inositol, myo-inositol. Myo-inositol is the cis-1,2,3,5-trans-4,6-cyclohexanehexol and it is prepared from an aqueous extract of corn kernels by precipitation and hydrolysis of crude phytate. These molecules have structural similarities to glucose and are involved in cellular signaling. It is considered a pseudovitamin as it is a molecule that does not qualify to be an essential vitamin because even though its presence is vital in the body, a deficiency in this molecule does not translate into disease conditions. Inositol can be found as an ingredient of OTC products by Health Canada but all current product whose main ingredient is inositol are discontinued. By the FDA, inositol is considered in the list of specific substances affirmed as generally recognized as safe (GRAS).

Inositol can stimulate glucose uptake in skeletal muscle cells which allows the decrease in blood sugar levels. This effect is later seen as a reduction in urine glucose concentration and indicates a decrease in high blood sugar levels.

In PCOS, the administration of inositol has produced the remission of symptoms as well as a reduction in male hormone secretion, a regulation of the cholesterol level, and a more efficient fat breakdown which allow to a significant reduction on body mass and appetite.

Vitamin A plays an essential role in the function of retina and is essential for growh and differentiation of epithelial tissue.

Vitamin A is effective for the treatment of Vitamin A deficiency. Vitamin A refers to a group of fat-soluble substances that are structurally related to and possess the biological activity of the parent substance of the group called all-trans retinol or retinol. Vitamin A plays vital roles in vision, epithelial differentiation, growth, reproduction, pattern formation during embryogenesis, bone development, hematopoiesis and brain development. It is also important for the maintenance of the proper functioning of the immune system.

Vitamin D ultimately comprises a group of lipid-soluble secosteroids responsible for a variety of biological effects, some of which include increasing the intestinal absorption of calcium, magnesium, and phosphate. With reference to human use, there are 2 main forms of vitamin D - vitamin D3 (cholecalciferol) and vitamin D2 (ergocalciferol). When non-specific references are made about 'vitamin d', the references are usually about the use of vitamin D3 and/or D2.

Vitamin D3 and D2 require hydroxylation in order to become biologically active in the human body. Since vitamin D can be endogenously synthesized in adequate amounts by most mammals exposed to sufficient quantities of sunlight, vitamin D functions like a hormone on vitamin D receptors to regulate calcium in opposition to parathyroid hormone. Vitamin D plays an essential physiological role in maintaining calcium homeostasis and metabolism. There are several different vitamin D supplements that are given to treat or to prevent osteomalacia and rickets, or to meet the daily criteria of vitamin D consumption.

The in vivo synthesis of the predominant two biologically active metabolites of vitamin D occurs in two steps. The first hydroxylation of vitamin D3 or D2 occurs in the liver to yield 25-hydroxyvitamin D while the second hydroxylation happens in the kidneys to give 1, 25-dihydroxyvitamin D . These vitamin D metabolites subsequently facilitate the active absorption of calcium and phosphorus in the small intestine, serving to increase serum calcium and phosphate levels sufficiently to allow bone mineralization . Conversely, these vitamin D metabolites also assist in mobilizing calcium and phosphate from bone and likely increase the reabsorption of calcium and perhaps also of phosphate via the renal tubules . There exists a period of 10 to 24 hours between the administration of vitamin D and the initiation of its action in the body due to the necessity of synthesis of the active vitamin D metabolites in the liver and kidneys . It is parathyroid hormone that is responsible for the regulation of such metabolism at the level of the kidneys .

Vitamin E Capsule is a Vitamin E preparation. Vitamin E acts as an antioxidant in the body. Vitamin E protects polyunsaturated fatty acids (which are components of cellular membrane) and other oxygen-sensitive substances such as vitamin A & vitamin C from oxidation. Vitamin E reacts with free radicals, which is the cause of oxidative damage to cell membranes, without the formation of another free radical in the process. The main pharmacological action of vitamin E in humans is its antioxidant effect.

In premature neonates irritability, edema, thrombosis and hemolytic anemia may be caused due to vitamin E deficiency. Creatinuria, ceroid deposition, muscle weakness, decreased erythrocyte survival or increased in vitro hemolysis by oxidizing agents have been identified in adults and children with low serum tocopherol concentrations.

Vitamin E is a collective term used to describe 8 separate fat soluble antioxidants, most commonly alpha-tocopherol. Vitamin E acts to protect cells against the effects of free radicals, which are potentially damaging by-products of the body's metabolism. Vitamin E deficiency is seen in persons with abetalipoproteinemia, premature, very low birth weight infants (birth weights less than 1500 grams, or 3½ pounds), cystic fibrosis, and cholestasis and severe liver disease. Preliminary research suggests vitamin E may help prevent or delay coronary heart disease and protect against the damaging effects of free radicals, which may contribute to the development of chronic diseases such as cancer. It also protects other fat-soluble vitamins (A and B group vitamins) from destruction by oxygen. Low levels of vitamin E have been linked to increased incidence of breast and colon cancer.

Trade Name Maxiton
Generic Ginseng IDB + vitamin A + vitamin D + vitamin E + vitamin B + vitamin B + vitamin B + vitamin B + vitamin C + asam folat + nikotinamid + biotin + Ca + tembaga + inositol + yodium + Fe + lesitin + lisin HCl + Mg + mangan + P + K + Zn
Weight 50mg, 5.000iu, 400iu, 15iu, 112mg, 25mg, 65mg, 1215mcg, 30mg, 0, 8mg, 25mg, 0, 06mg, 40mg, 0, 1mg, 7, 5mg, 0, 05mg, 5mg, 50mg, 0, 3mg, 2mg, 0, 33mg, 18, 5mg, 5mg, 0, 9mg
Type Capsule
Therapeutic Class
Manufacturer Distriversa Buanamas, Upha Pharmaceutical
Available Country Indonesia
Last Updated: January 7, 2025 at 1:49 am

Uses

Biotin is a B-complex vitamin found in many multivitamin products.

For nutritional supplementation, also for treating dietary shortage or imbalance.

Inositol is an ingredient found in a variety of nutritional products.

Inositol may be used in food without any limitation. As a drug, inositol is used as a nutrient supplement in special dietary foods and infant formula. As it presents a relevant role in ensuring oocyte fertility, inositol has been studied for its use in the management of polycystic ovaries. Inositol is also being researched for the treatment of diabetes, prevention of metabolic syndrome, aid agent for weight loss, treatment of depression, psychiatric disorder and anxiety disorder and for prevention of cancer.

Effective for:

Possibly Effective for:

Vitamin D is an ingredient found in a variety of supplements and vitamins.

Vitamin D is indicated for use in the treatment of hypoparathyroidism, refractory rickets (also known as vitamin D resistant rickets), and familial hypophosphatemia .

As a dietary supplement:

Therapeutic use

: Heavy metal poisoning, Hepatotoxin poisoning, Hemolytic anemia, Oxygen therapy and replacement therapy in nutritional deficiency states for the betterment of skin and hair.

Maxiton is also used to associated treatment for these conditions: Vitamin Deficiency, Nutritional supplementationDeficiency, Vitamin A, Deficiency, Vitamin D, Degenerative Retinal Disorders, Disorder of the Epithelium, Disorder of the Mesoderm, Inner ear disorder, Vitamin Deficiency, Vitamin E Deficiency, Nutritional supplementationDeficiency, Vitamin DVitamin Deficiency, Long-chain omega-3 fatty acid supplementation, Dietary supplementation

How Maxiton works

Biotin is necessary for the proper functioning of enzymes that transport carboxyl units and fix carbon dioxide, and is required for various metabolic functions, including gluconeogenesis, lipogenesis, fatty acid biosynthesis, propionate metabolism, and catabolism of branched-chain amino acids.

The mechanism of action of inositol in brain disorders is not fully understood but it is thought that it may be involved in neurotransmitter synthesis and it is a precursor to the phosphatidylinositol cycle. The change that occurs in the cycle simulates when the postsynaptic receptor is activated but without activating the receptor. This activity provokes a fake activation which regulated the activity of monoamines and other neurotransmitters.

Reports have shown that insulin resistance plays a key role in the clinical development of PCOS. The presence of hyperinsulinemia can induce an excess in androgen production by stimulating ovaries to produce androgens and by reducing the sex hormone binding globulin serum levels. One of the mechanisms of insulin deficiency is thought to be related to a deficiency in inositol in the inositolphosphoglycans. The administration of inositol allows it to act as a direct messenger of the insulin signaling and improves glucose tissue uptake. This mechanism is extrapolated to its functions in diabetes treatment, metabolic syndrome, and weight loss.

In cancer, the mechanism of action of inositol is not fully understood. It is hypothesized that the administration of inositol increases the level of lower-phosphate inositol phosphates why can affect cycle regulation, growth, and differentiation of malignant cells. On the other hand, the formation of inositol hexaphosphate after administration of inositol presents antioxidant characteristics by the chelation of ferric ions and suppression of hydroxyl radicals.

Vision:Vitamin A (all-trans retinol) is converted in the retina to the 11-cis-isomer of retinaldehyde or 11-cis-retinal. 11-cis-retinal functions in the retina in the transduction of light into the neural signals necessary for vision. 11-cis-retinal, while attached to opsin in rhodopsin is isomerized to all-trans-retinal by light. This is the event that triggers the nerve impulse to the brain which allows for the perception of light. All-trans-retinal is then released from opsin and reduced to all-trans-retinol. All-trans-retinol is isomerized to 11-cis-retinol in the dark, and then oxidized to 11-cis-retinal. 11-cis-retinal recombines with opsin to re-form rhodopsin. Night blindness or defective vision at low illumination results from a failure to re-synthesize 11-cis retinal rapidly.
Epithelial differentiation: The role of Vitamin A in epithelial differentiation, as well as in other physiological processes, involves the binding of Vitamin A to two families of nuclear retinoid receptors (retinoic acid receptors, RARs; and retinoid-X receptors, RXRs). These receptors function as ligand-activated transcription factors that modulate gene transcription. When there is not enough Vitamin A to bind these receptors, natural cell differentiation and growth are interrupted.

Most individuals naturally generate adequate amounts of vitamin D through ordinary dietary intake of vitamin D (in some foods like eggs, fish, and cheese) and natural photochemical conversion of the vitamin D3 precursor 7-dehydrocholesterol in the skin via exposure to sunlight.

Conversely, vitamin D deficiency can often occur from a combination of insufficient exposure to sunlight, inadequate dietary intake of vitamin D, genetic defects with endogenous vitamin D receptor, or even severe liver or kidney disease . Such deficiency is known for resulting in conditions like rickets or osteomalacia, all of which reflect inadequate mineralization of bone, enhanced compensatory skeletal demineralization, resultant decreased calcium ion blood concentrations, and increases in the production and secretion of parathyroid hormone . Increases in parathyroid hormone stimulates the mobilization of skeletal calcium and the renal excretion of phosphorus . This enhanced mobilization of skeletal calcium leads towards porotic bone conditions .

Ordinarily, while vitamin D3 is made naturally via photochemical processes in the skin, both itself and vitamin D2 can be found in various food and pharmaceutical sources as dietary supplements. The principal biological function of vitamin D is the maintenance of normal levels of serum calcium and phosphorus in the bloodstream by enhancing the efficacy of the small intestine to absorb these minerals from the diet . At the liver, vitamin D3 or D2 is hydroxylated to 25-hydroxyvitamin D and then finally to the primary active metabolite 1,25-dihydroxyvitamin D in the kidney via further hydroxylation . This final metabolite binds to endogenous vitamin d receptors, which results in a variety of regulatory roles - including maintaining calcium balance, the regulation of parathyroid hormone, the promotion of the renal reabsorption of calcium, increased intestinal absorption of calcium and phosphorus, and increased calcium and phosphorus mobilization of calcium and phosphorus from bone to plasma to maintain balanced levels of each in bone and the plasma .

The mechanism of action for most of vitamin E's effects are still unknown. Vitamin E is an antioxidant, preventing free radical reactions with cell membranes. Though in some cases vitamin E has been shown to have pro-oxidant activity.

One mechanism of vitamin E's antioxidant effect is in the termination of lipid peroxidation. Vitamin E reacts with unstable lipid radicals, producing stable lipids and a relatively stable vitamin E radical. The vitamin E radical is then reduced back to stable vitamin E by reaction with ascorbate or glutathione.

Dosage

Maxiton dosage

Vitamin A deficiency For severe deficiency with corneal changes: 500,000 unit/day for 3 days, followed by 50,000 unit/day for 2 wk and then 10,000-20,000 unit/day for 2 mth as follow-up therapy.

For cases without corneal changes: 10,000-25,000 unit/day until clinical improvement occurs (usually 1 -2 wk).

Betterment of Cardiovascular health: 400 mg - 800 mg / day

Deficiency syndrome in adults: 200 mg - 400 mg / day

Deficiency syndrome in children: 200 mg / day

Thalassemia: 800 mg / day

Sickle-cell anemia: 400 mg / day

Betterment of Skin & Hair: 200 mg - 400 mg / day (Topical use is also established for beautification)

Chronic cold in adults: 200 mg / day

Side Effects

Hypervitaminosis A characterised by fatigue, irritability, anorexia, weight loss, vomiting and other Gl disturbances, low-grade fever, hepatosplenomegaly, skin changes, alopoecia, dry hair, cracking and bleeding lips, SC swelling, nocturia, pains in bones and joints.

Overdoses (>1g) have been associated with minor side effects, including hypertension, fatigue, diarrhea and myopathy

Toxicity

Prolonged skin contact may cause irritation.

Consumption of high doses of inositol is reported to only cause some gastrointestinal effects.

Acute toxicity to vitamin A can occur when adults or children ingest >100x or >20x the RDA, respectively, over a period of hours or a few days. The RDA for vitamin A differs depending on age and sex and can range from 300 - 900 μg retinol activity equivalents (RAE) per day. Symptoms of acute systemic toxicity generally include mucocutaneous involvement (e.g. xerosis, cheilitis, skin peeling) and may involve mental status changes. Children are typically more susceptible to acute vitamin A toxicity - daily intakes of as little as 1500 IU/kg have been observed to result in toxicity.

Chronic vitamin A toxicity can develop following the long-term ingestion of high vitamin A doses. While there is a wide variation in the lowest toxic vitamin A dose, the ingestion of >25 000 IU daily for 6 years or 100,000 IU daily for 6 months is considered to be toxic. Chronic vitamin A toxicity can affect many organ systems and can lead to the development of osteoporosis and CNS effects (e.g. headaches).

The use of pharmacological or nutraceutical vitamin d and/or even excessive dietary intake of vitamin d is contraindicated in patients with hypercalcemia, malabsorption syndrome, abnormal sensitivity to the toxic effects of vitamin d, and hypervitaminosis D .

Hypersensitivity to vitamin d is one plausible etiologic factor in infants with idiopathic hypercalcemia - a case in which vitamin d use must be strictly restricted .

As vitamin d intake is available via fortified foods, dietary supplements, and clinical drug sources, serum concentrations and therapeutic dosages should be reviewed regularly and readjusted as soon as there is clinical improvement . Dosage levels are required to be individualized on an individual patient by patient basis as caution must be exercised to prevent the presence of too much vitamin d in the body and the various potentially serious toxic effects associated with such circumstances .

In particular, the range between therapeutic and toxic doses is quite narrow in vitamin d resistant rickets . When high therapeutic doses are used, progress should be followed with frequent blood calcium determinations .

When treating hypoparathyroidism, intravenous calcium, parathyroid hormone, and/or dihydrotachysterol may be required .

Maintenance of normal serum phosphorus levels by dietary phosphate restriction and/or administration of aluminum gels as intestinal phosphate binders in those patients with hyperphosphatemia as frequently seen in renal osteodystrophy is essential to prevent metastatic calcification .

Mineral oil interferes with the absorption of lipid-soluble vitamins, including vitamin d preparations .

The administration of thiazide diuretics to hypoparathyroid patients who are concurrently being treated with vitamin d can result in hypercalcemia .

At this time, no long term animal studies have been performed to evaluate vitamin potential for carcinogens, mutagenesis, or fertility .

As various animal reproduction studies have demonstrated fetal abnormalities in several species associated with hypervitaminosis D, the use of vitamin d in excess of the recommended dietary allowance during normal pregnancy should be avoided . The safety in excess of 400 USP units of vitamin d daily during pregnancy has not been established . The abnormalities observed are similar to the supravalvular aortic stenosis syndrome described in infants that is characterized by supravalvular aortic stenosis, elfin facies, and mental retardation .

In a nursing mother given large doses of vitamin D, 25-hydroxycholecalciferol appeared in the milk and caused hypercalcemia in her child. Caution is subsequently required when contemplating the use of vitamin d in a nursing woman, and the necessity of monitoring infants' serum calcium concentration if vitamin d is administered to a breastfeeding woman .

Adverse reactions associated with the use of vitamin d are primarily linked to having hypervitaminosis D occurring [FDA Lanel]. In particular, hypervitaminosis D is characterized by effects specific effects on specific organ systems. At the renal system, hypervitaminosis D can cause impairment of renal function with polyuria, nocturne, polydipsia, hypercalciuria, reversible asotemia, hypertension, nephrocalcinosis, generalized vascular calcification, or even irreversible renal insufficiency which may result in death . Elsewhere, hypervitaminosis D can also cause CNS mental retardation . At the level of soft tissues, it can widespread calcification of the soft tissues, including the heart, blood vessels, renal tubules, and lungs . In the skeletal system, bone demineralization (osteoporosis) in adults can occur while a decline in the average rate of linear growth and increased mineralization of bones, dwarfism, vague aches, stiffness, and weakness can occur in infants and children . Finally, hypervitaminosis D can also lead to nausea, anorexia, and constipation at the gastrointestinal level as well as mild acidosis, anemia, or weight loss via metabolic processes .

The LD(50) in animals is unknown .

There is no data available for effects in pregnancy, breast feeding, hepatic impairment, or renal impairment. However, it appears that the process of vitamin E elimination is strict and self regulating enough that vitamin E toxicity is exceedingly rare. Studies showing adverse effects from excess vitamin E generally involve people consuming more than 1000mg/day for weeks to months.

Precaution

Cholestatic jaundice; fat-malabsorption conditions. Monitor patients closely for toxicity. Liver impairment and children.

Vitamin E may enhance the anticoagulant activity of anticoagulant drugs. Caution is advised in premature infants with high dose Vitamin E supplementation, because of reported risk of necrotizing enterocilitis.

Interaction

Decreased absorption with neomycin. Increased risk of hypervitaminosis A with synthetic retinoids eg, acitretin, isotretinoin and tretinoin. Increased risk of toxicity when used with alcohol.

Vitamin E may impair the absorption of Vitamin A. Vitamin K functions impairement happens at the level of prothrombin formation and potentiates the effect of Warfarin.

Volume of Distribution

The pharmacokinetic profile of inositol was studied in preterm infants and the estimated volume of distribution was reported to be 0.5115 L/kg.

0.41L/kg in premature neonates given a 20mg/kg intramuscular injection.

Elimination Route

Systemic - approximately 50%

Inositol is absorbed from the small intestine. In patients with inositol deficiency, the maximal plasma concentration after oral administration of inositol is registered to be of 4 hours. Inositol is taken up by the tissues via sodium-dependent inositol co-transporter which also mediates glucose uptake. Oral ingestion of inositol is registered to generate a maximal plasma concentration of 36-45 mcg.

Readily absorbed from the normal gastrointestinal tract

Vitamin D3 and D2 are readily absorbed from the small intestine (proximal or distal) .

10-33% of deuterium labelled vitamin E is absorbed in the small intestine. Absorption of Vitamin E is dependant upon absorption of the fat in which it is dissolved. For patients with poor fat absorption, a water soluble form of vitamin E may need to be substituted such as tocopheryl polyethylene glycol-1000 succinate.

In other studies the oral bioavailability of alpha-tocopherol was 36%, gamma-tocotrienol was 9%. The time to maximum concentration was 9.7 hours for alpha-tocopherol and 2.4 hours for gamma-tocotrienol.

Half Life

The pharmacokinetic profile of inositol was studied in preterm infants and the estimated elimination half-life was reported to be of 5.22 hours.

1.9 hours

Although certain studies suggest the half-life of 1,25-hydroxyvitamin D3 may be approximately 15 hours, the half-life of 25-hydroxyvitamin D3 appears to have a half-life of about 15 days . Intriguingly however, the half-lives of any particular administration of vitamin d can vary and in general the half-lives of vitamin D2 metabolites have been demonstrated to be shorter overall than vitamin D3 half-lives with this being affected by vitamin d binding protein concentrations and genotype in particular individuals .

44 hours in premature neonates given a 20mg/kg intramuscular injection. 12 minutes in intravenous injection of intestinal lymph.

Clearance

The pharmacokinetic profile of inositol was studied in preterm infants and the estimated clearance rate was reported to be 0.0679 L.kg/h.

Some studies propose an estimated clearance rate for 1,25-dihydroxyvitamin D as 31 +/- 4 ml/min in healthy adults .

6.5mL/hr/kg in premature neonates given a 20mg/kg intramuscular injection.

Elimination Route

Most of the administered dose is excreted in urine.

The primary excretion route of vitamin D is via the bile into the feces .

Alpha tocopherol is excreted in urine as well as bile in the feces mainly as a carboxyethyl-hydrochroman (CEHC) metabolite, but it can be excreted in it's natural form .

Pregnancy & Breastfeeding use

Pregnancy Category A. Adequate and well-controlled human studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).

Use in pregnancy: Vitamin E may be used in pregnancy in the normally recommended dose but the safety of high dose therapy has not been established.

Use in lactation: There appears to be no contraindication to breast feeding by mothers taking the normally recommended dose.

Contraindication

Hypervitaminosis A; pregnancy (dose exceeding RDA).

No known contraindications found.

Special Warning

Use in Children: Vitamin E is safe for children

Acute Overdose

Large doses of vitamin E (more than 1 gm/day) have been reported to increase bleeding tendency in vitamin K deficient patients such as those taking oral anticoagulants.

Storage Condition

Store at a cool and dry place, Protect from light and moisture.

Innovators Monograph


*** Taking medicines without doctor's advice can cause long-term problems.
Share