Natures Plus Baby Plex

Natures Plus Baby Plex Uses, Dosage, Side Effects, Food Interaction and all others data.

A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk.

Biotin is a water-soluble B-complex vitamin which is composed of an ureido ring fused with a tetrahydrothiophene ring, which attaches a valeric acid substituent at one of its carbon atoms. Biotin is used in cell growth, the production of fatty acids, metabolism of fats, and amino acids. It plays a role in the Kreb cycle, which is the process in which energy is released from food. Biotin not only assists in various metabolic chemical conversions, but also helps with the transfer of carbon dioxide. Biotin is also helpful in maintaining a steady blood sugar level. Biotin is often recommended for strengthening hair and nails. Consequenty, it is found in many cosmetic and health products for the hair and skin. Biotin deficiency is a rare nutritional disorder caused by a deficiency of biotin. Initial symptoms of biotin deficiency include: Dry skin, Seborrheic dermatitis, Fungal infections, rashes including erythematous periorofacial macular rash, fine and brittle hair, and hair loss or total alopecia. If left untreated, neurological symptoms can develop, including mild depression, which may progress to profound lassitude and, eventually, to somnolence; changes in mental status, generalized muscular pains (myalgias), hyperesthesias and paresthesias. The treatment for biotin deficiency is to simply start taking some biotin supplements. A lack of biotin in infants will lead to a condition called seborrheic dermatitis or "cradle cap". Biotin deficiencies are extremely rare in adults but if it does occur, it will lead to anemia, depression, hair loss, high blood sugar levels, muscle pain, nausea, loss of appetite and inflamed mucous membranes.

Niacin is a preparation of Nicotinic acid. It is proven effective at lowering VLDL, LDL, total cholesterol and triglyceride levels while raising HDL levels. So Niacin has been prescriped for the treatment of cardiovascular disease particularly the hyperlipidemias.

Niacin is a B vitamin used to treat vitamin deficiencies as well as hyperlipidemia, dyslipidemia, hypertriglyceridemia, and to reduce the risk of myocardial infarctions. Niacin acts to decrease levels of very low density lipoproteins and low density lipoproteins, while increasing levels of high density lipoproteins. Niacin has a wide therapeutic window with usual oral doses between 500mg and 2000mg. Patients with diabetes, renal failure, uncontrolled hypothyroidism, and elderly patients taking niacin with simvastatin or lovastatin are at increased risk of myopathy and rhabdomyolysis.

Vitamin A plays an essential role in the function of retina and is essential for growh and differentiation of epithelial tissue.

Vitamin A is effective for the treatment of Vitamin A deficiency. Vitamin A refers to a group of fat-soluble substances that are structurally related to and possess the biological activity of the parent substance of the group called all-trans retinol or retinol. Vitamin A plays vital roles in vision, epithelial differentiation, growth, reproduction, pattern formation during embryogenesis, bone development, hematopoiesis and brain development. It is also important for the maintenance of the proper functioning of the immune system.

Vitamin D ultimately comprises a group of lipid-soluble secosteroids responsible for a variety of biological effects, some of which include increasing the intestinal absorption of calcium, magnesium, and phosphate. With reference to human use, there are 2 main forms of vitamin D - vitamin D3 (cholecalciferol) and vitamin D2 (ergocalciferol). When non-specific references are made about 'vitamin d', the references are usually about the use of vitamin D3 and/or D2.

Vitamin D3 and D2 require hydroxylation in order to become biologically active in the human body. Since vitamin D can be endogenously synthesized in adequate amounts by most mammals exposed to sufficient quantities of sunlight, vitamin D functions like a hormone on vitamin D receptors to regulate calcium in opposition to parathyroid hormone. Vitamin D plays an essential physiological role in maintaining calcium homeostasis and metabolism. There are several different vitamin D supplements that are given to treat or to prevent osteomalacia and rickets, or to meet the daily criteria of vitamin D consumption.

The in vivo synthesis of the predominant two biologically active metabolites of vitamin D occurs in two steps. The first hydroxylation of vitamin D3 or D2 occurs in the liver to yield 25-hydroxyvitamin D while the second hydroxylation happens in the kidneys to give 1, 25-dihydroxyvitamin D . These vitamin D metabolites subsequently facilitate the active absorption of calcium and phosphorus in the small intestine, serving to increase serum calcium and phosphate levels sufficiently to allow bone mineralization . Conversely, these vitamin D metabolites also assist in mobilizing calcium and phosphate from bone and likely increase the reabsorption of calcium and perhaps also of phosphate via the renal tubules . There exists a period of 10 to 24 hours between the administration of vitamin D and the initiation of its action in the body due to the necessity of synthesis of the active vitamin D metabolites in the liver and kidneys . It is parathyroid hormone that is responsible for the regulation of such metabolism at the level of the kidneys .

Vitamin E Capsule is a Vitamin E preparation. Vitamin E acts as an antioxidant in the body. Vitamin E protects polyunsaturated fatty acids (which are components of cellular membrane) and other oxygen-sensitive substances such as vitamin A & vitamin C from oxidation. Vitamin E reacts with free radicals, which is the cause of oxidative damage to cell membranes, without the formation of another free radical in the process. The main pharmacological action of vitamin E in humans is its antioxidant effect.

In premature neonates irritability, edema, thrombosis and hemolytic anemia may be caused due to vitamin E deficiency. Creatinuria, ceroid deposition, muscle weakness, decreased erythrocyte survival or increased in vitro hemolysis by oxidizing agents have been identified in adults and children with low serum tocopherol concentrations.

Vitamin E is a collective term used to describe 8 separate fat soluble antioxidants, most commonly alpha-tocopherol. Vitamin E acts to protect cells against the effects of free radicals, which are potentially damaging by-products of the body's metabolism. Vitamin E deficiency is seen in persons with abetalipoproteinemia, premature, very low birth weight infants (birth weights less than 1500 grams, or 3½ pounds), cystic fibrosis, and cholestasis and severe liver disease. Preliminary research suggests vitamin E may help prevent or delay coronary heart disease and protect against the damaging effects of free radicals, which may contribute to the development of chronic diseases such as cancer. It also protects other fat-soluble vitamins (A and B group vitamins) from destruction by oxygen. Low levels of vitamin E have been linked to increased incidence of breast and colon cancer.

Trade Name Natures Plus Baby Plex
Generic Vitamin A + vitamin C + vitamin D + vitamin E + vitamin B + vitamin B + niacin + vitamin B + vitamin B + biotin + pantothenic
Weight 450mg, 43.75mg, 310mcg, 3.36mg, 10.625mg, 20.75mg, 10mg, 60.5mg, 122.5mg, 25mcg, 0.003mg
Type Syrup
Therapeutic Class
Manufacturer Natural Organics, Radiant Sentral Nutrindo
Available Country Indonesia
Last Updated: September 19, 2023 at 7:00 am
Natures Plus Baby Plex
Natures Plus Baby Plex

Uses

Biotin is a B-complex vitamin found in many multivitamin products.

For nutritional supplementation, also for treating dietary shortage or imbalance.

Therapy with lipid-altering agents should be only one component of multiple risk factor intervention in individuals at significantly increased risk for atheroscleroticvascular disease due to hyperlipidemia. Niacin therapy is used for an adjunct to diet when the response to a diet restricted in saturated fat and cholesterol and other nonpharmacologic measures alone has been inadequate.

  • Niacin is used to reduce elevated TC, LDL-C, Apo B and TG levels, and to increase HDL-C in patients with primary hyperlipidemia and mixed dyslipidemia.
  • In patients with a history of myocardial infarction and hyperlipidemia, niacin is used to reduce the risk of recurrent nonfatal myocardial infarction.
  • In patients with a history of coronary artery disease (CAD) and hyperlipidemia, niacin, in combination with a bile acid binding resin, is used to slow progression or promote regression of atherosclerotic disease.
  • Niacin in combination with a bile acid binding resin is used to reduce elevated TC and LDL-C levels in adult patients with primary hyperlipidemia.
  • Niacin is also used as adjunctive therapy for treatment of adult patients with severe hypertriglyceridemia who present a risk of pancreatitis and who do not respond adequately to a determined dietary effort to control them.

Effective for:

  • Vitamin A deficiency. Taking vitamin A by mouth is effective for preventing and treating symptoms of vitamin A deficiency. Vitamin A deficiency can occur in people with protein deficiency, diabetes, over-active thyroid, fever, liver disease, cystic fibrosis, or an inherited disorder called abetalipoproteinemia.

Possibly Effective for:

  • Breast cancer. Premenopausal women with a family history of breast cancer who consume high levels of vitamin A in their diet seem to have reduced risk of developing breast cancer. It is not known if taking vitamin A supplements has the same benefit.
  • Cataracts. Research suggests that high intake of vitamin A in the diet is linked to a lower risk of developing cataracts.
  • Diarrhea related to HIV. Taking vitamin A along with conventional medicines seems to decrease the risk of death from diarrhea in HIV-positive children with vitamin A deficiency.
  • Malaria. Taking vitamin A by mouth seems to decrease malaria symptoms in children less than 3 years-old living in areas where malaria is common.
  • Measles. Taking vitamin A by mouth seems to reduce the risk of measles complications or death in children with measles and vitamin A deficiency.
  • Precancerous lesions in the mouth (oral leukoplakia). Research suggests that taking vitamin A can help treat precancerous lesions in the mouth.
  • Recovery from laser eye surgery (photoreactive keratectomy). Taking vitamin A by mouth along with vitamin E seems to improve healing after laser eye surgery.
  • Complications after pregnancy. Taking vitamin A seems to reduce the risk of diarrhea and fever after pregnancy in malnourished women.
  • Complications during pregnancy. Taking vitamin A by mouth seems to reduce the risk of death and night blindness during pregnancy in malnourished women.
  • Eye disease affecting the retina (retinitis pigmentosa). Research suggests that taking vitamin A can slow the progression of an eye disease that causes damage to the retina.

Vitamin D is an ingredient found in a variety of supplements and vitamins.

Vitamin D is indicated for use in the treatment of hypoparathyroidism, refractory rickets (also known as vitamin D resistant rickets), and familial hypophosphatemia .

As a dietary supplement:

  • Vitamin E deficiency resulting from impaired absorption.
  • Increased requirements due to diet rich in polyunsaturated fats.
  • For healthy hair & skin
  • As an Antioxidant
  • Hemolytic anemia due to Vitamin E deficiency

Therapeutic use

: Heavy metal poisoning, Hepatotoxin poisoning, Hemolytic anemia, Oxygen therapy and replacement therapy in nutritional deficiency states for the betterment of skin and hair.

Natures Plus Baby Plex is also used to associated treatment for these conditions: Vitamin Deficiency, Nutritional supplementationAtherosclerosis, Mixed Dyslipidemias, Myocardial Infarction, Pellagra, Vitamin Deficiency, Primary Hyperlipidemia, Severe Hyperlipidemia, Dietary supplementationDeficiency, Vitamin A, Deficiency, Vitamin D, Degenerative Retinal Disorders, Disorder of the Epithelium, Disorder of the Mesoderm, Inner ear disorder, Vitamin Deficiency, Vitamin E Deficiency, Nutritional supplementationDeficiency, Vitamin DVitamin Deficiency, Long-chain omega-3 fatty acid supplementation, Dietary supplementation

How Natures Plus Baby Plex works

Biotin is necessary for the proper functioning of enzymes that transport carboxyl units and fix carbon dioxide, and is required for various metabolic functions, including gluconeogenesis, lipogenesis, fatty acid biosynthesis, propionate metabolism, and catabolism of branched-chain amino acids.

Niacin performs a number of functions in the body and so has many mechanisms, not all of which have been fully described. Niacin can decrease lipids and apolipoprotein B (apo B)-containing lipoproteins by modulating triglyceride synthesis in the liver, which degrades apo B, or by modulating lipolysis in adipose tissue.

Niacin inhibits hepatocyte diacylglycerol acyltransferase-2. This action prevents the final step of triglyceride synthesis in hepatocytes, limiting available triglycerides for very low density lipoproteins (VLDL). This activity also leads to intracellular degradation of apo B and decreased production of low density lipoproteins, the catabolic product of VLDL.

Niacin also inhibits a high density lipoprotein (HDL) catabolism receptor, which increases the levels and half life of HDL.

Vision:Vitamin A (all-trans retinol) is converted in the retina to the 11-cis-isomer of retinaldehyde or 11-cis-retinal. 11-cis-retinal functions in the retina in the transduction of light into the neural signals necessary for vision. 11-cis-retinal, while attached to opsin in rhodopsin is isomerized to all-trans-retinal by light. This is the event that triggers the nerve impulse to the brain which allows for the perception of light. All-trans-retinal is then released from opsin and reduced to all-trans-retinol. All-trans-retinol is isomerized to 11-cis-retinol in the dark, and then oxidized to 11-cis-retinal. 11-cis-retinal recombines with opsin to re-form rhodopsin. Night blindness or defective vision at low illumination results from a failure to re-synthesize 11-cis retinal rapidly.
Epithelial differentiation: The role of Vitamin A in epithelial differentiation, as well as in other physiological processes, involves the binding of Vitamin A to two families of nuclear retinoid receptors (retinoic acid receptors, RARs; and retinoid-X receptors, RXRs). These receptors function as ligand-activated transcription factors that modulate gene transcription. When there is not enough Vitamin A to bind these receptors, natural cell differentiation and growth are interrupted.

Most individuals naturally generate adequate amounts of vitamin D through ordinary dietary intake of vitamin D (in some foods like eggs, fish, and cheese) and natural photochemical conversion of the vitamin D3 precursor 7-dehydrocholesterol in the skin via exposure to sunlight.

Conversely, vitamin D deficiency can often occur from a combination of insufficient exposure to sunlight, inadequate dietary intake of vitamin D, genetic defects with endogenous vitamin D receptor, or even severe liver or kidney disease . Such deficiency is known for resulting in conditions like rickets or osteomalacia, all of which reflect inadequate mineralization of bone, enhanced compensatory skeletal demineralization, resultant decreased calcium ion blood concentrations, and increases in the production and secretion of parathyroid hormone . Increases in parathyroid hormone stimulates the mobilization of skeletal calcium and the renal excretion of phosphorus . This enhanced mobilization of skeletal calcium leads towards porotic bone conditions .

Ordinarily, while vitamin D3 is made naturally via photochemical processes in the skin, both itself and vitamin D2 can be found in various food and pharmaceutical sources as dietary supplements. The principal biological function of vitamin D is the maintenance of normal levels of serum calcium and phosphorus in the bloodstream by enhancing the efficacy of the small intestine to absorb these minerals from the diet . At the liver, vitamin D3 or D2 is hydroxylated to 25-hydroxyvitamin D and then finally to the primary active metabolite 1,25-dihydroxyvitamin D in the kidney via further hydroxylation . This final metabolite binds to endogenous vitamin d receptors, which results in a variety of regulatory roles - including maintaining calcium balance, the regulation of parathyroid hormone, the promotion of the renal reabsorption of calcium, increased intestinal absorption of calcium and phosphorus, and increased calcium and phosphorus mobilization of calcium and phosphorus from bone to plasma to maintain balanced levels of each in bone and the plasma .

The mechanism of action for most of vitamin E's effects are still unknown. Vitamin E is an antioxidant, preventing free radical reactions with cell membranes. Though in some cases vitamin E has been shown to have pro-oxidant activity.

One mechanism of vitamin E's antioxidant effect is in the termination of lipid peroxidation. Vitamin E reacts with unstable lipid radicals, producing stable lipids and a relatively stable vitamin E radical. The vitamin E radical is then reduced back to stable vitamin E by reaction with ascorbate or glutathione.

Dosage

Natures Plus Baby Plex dosage

Niacin can be administered as a single dose at bedtime, after a snack or meal and doses should be individualized according to patient response. Therapy with Niacin must be initiated at 500 mg in order to reduce the incidence and severity of side effects which may occur during early therapy.

Maintenance Dose: The daily dosage of Niacin should not be increased by more than 500 mg in any 4-week period. The recommended maintenance dose is 1000 mg (two 500 mg tablets or one 1000 mg tablet) to 2000 mg (two 1000 mg tablets or four 500 mg tablets) once daily at bedtime. Doses greater than 2000 mg daily are not recommended. Women may respond at lower Niacin doses than men.

Single-dose bioavailability studies have demonstrated that two of the 500 mg and one of the 1000 mg tablet strengths are interchangeable but three of the 500 mg and two of the 750 mg tablet strengths are not interchangeable.

Flushing of the skin may be reduced in frequency or severity by pretreatment with aspirin (up to the recommended dose of 325 mg taken 30 minutes prior to Niacin dose). Tolerance to this flushing develops rapidly over the course of several weeks. Flushing,pruritus, andgastrointestinaldistress are also greatly reduced by slowly increasing the dose of niacin and avoiding administration on an empty stomach. Concomitant alcoholic, hot drinks or spicy foods may increase the side effects of flushing and pruritus and should be avoided around the time of Niacin ingestion.

Equivalent doses of Niacin should not be substituted for sustained-release (modified-release, timed-release) niacin preparations or immediate-release (crystalline) niacin. Patients previously receiving other niacin products should be started with the recommended Niacin titration schedule, and the dose should subsequently be individualized based on patient response.

If Niacin therapy is discontinued for an extended period, reinstitution of therapy should include a titration phase.

Vitamin A deficiency For severe deficiency with corneal changes: 500,000 unit/day for 3 days, followed by 50,000 unit/day for 2 wk and then 10,000-20,000 unit/day for 2 mth as follow-up therapy.

For cases without corneal changes: 10,000-25,000 unit/day until clinical improvement occurs (usually 1 -2 wk).

Betterment of Cardiovascular health: 400 mg - 800 mg / day

Deficiency syndrome in adults: 200 mg - 400 mg / day

Deficiency syndrome in children: 200 mg / day

Thalassemia: 800 mg / day

Sickle-cell anemia: 400 mg / day

Betterment of Skin & Hair: 200 mg - 400 mg / day (Topical use is also established for beautification)

Chronic cold in adults: 200 mg / day

Niacin tablets should be taken whole and should not be broken, crushed or chewed before swallowing.

Side Effects

Niacin is generally well tolerated; adverse reactions have been mild and transient.The most frequent advers effects were flushing, itching, pruritis, nausea and GI upset, jaundice ,hypotension, tachycardia, increased serum blood glucose and uric acid levels, myalgia.

Hypervitaminosis A characterised by fatigue, irritability, anorexia, weight loss, vomiting and other Gl disturbances, low-grade fever, hepatosplenomegaly, skin changes, alopoecia, dry hair, cracking and bleeding lips, SC swelling, nocturia, pains in bones and joints.

Overdoses (>1g) have been associated with minor side effects, including hypertension, fatigue, diarrhea and myopathy

Toxicity

Prolonged skin contact may cause irritation.

Overdose of niacin may present with severe prolonged hypotension. Patients experiencing an overdose should be treated with supportive measures which may include intravenous fluids.

The oral LD50 in the mouse is 3720mg/kg, in the rabbit is 4550mg/kg, in the rat is 7000mg/kg, and the dermal LD50 in the rat is >2000mg/kg.

Acute toxicity to vitamin A can occur when adults or children ingest >100x or >20x the RDA, respectively, over a period of hours or a few days. The RDA for vitamin A differs depending on age and sex and can range from 300 - 900 μg retinol activity equivalents (RAE) per day. Symptoms of acute systemic toxicity generally include mucocutaneous involvement (e.g. xerosis, cheilitis, skin peeling) and may involve mental status changes. Children are typically more susceptible to acute vitamin A toxicity - daily intakes of as little as 1500 IU/kg have been observed to result in toxicity.

Chronic vitamin A toxicity can develop following the long-term ingestion of high vitamin A doses. While there is a wide variation in the lowest toxic vitamin A dose, the ingestion of >25 000 IU daily for 6 years or 100,000 IU daily for 6 months is considered to be toxic. Chronic vitamin A toxicity can affect many organ systems and can lead to the development of osteoporosis and CNS effects (e.g. headaches).

The use of pharmacological or nutraceutical vitamin d and/or even excessive dietary intake of vitamin d is contraindicated in patients with hypercalcemia, malabsorption syndrome, abnormal sensitivity to the toxic effects of vitamin d, and hypervitaminosis D .

Hypersensitivity to vitamin d is one plausible etiologic factor in infants with idiopathic hypercalcemia - a case in which vitamin d use must be strictly restricted .

As vitamin d intake is available via fortified foods, dietary supplements, and clinical drug sources, serum concentrations and therapeutic dosages should be reviewed regularly and readjusted as soon as there is clinical improvement . Dosage levels are required to be individualized on an individual patient by patient basis as caution must be exercised to prevent the presence of too much vitamin d in the body and the various potentially serious toxic effects associated with such circumstances .

In particular, the range between therapeutic and toxic doses is quite narrow in vitamin d resistant rickets . When high therapeutic doses are used, progress should be followed with frequent blood calcium determinations .

When treating hypoparathyroidism, intravenous calcium, parathyroid hormone, and/or dihydrotachysterol may be required .

Maintenance of normal serum phosphorus levels by dietary phosphate restriction and/or administration of aluminum gels as intestinal phosphate binders in those patients with hyperphosphatemia as frequently seen in renal osteodystrophy is essential to prevent metastatic calcification .

Mineral oil interferes with the absorption of lipid-soluble vitamins, including vitamin d preparations .

The administration of thiazide diuretics to hypoparathyroid patients who are concurrently being treated with vitamin d can result in hypercalcemia .

At this time, no long term animal studies have been performed to evaluate vitamin potential for carcinogens, mutagenesis, or fertility .

As various animal reproduction studies have demonstrated fetal abnormalities in several species associated with hypervitaminosis D, the use of vitamin d in excess of the recommended dietary allowance during normal pregnancy should be avoided . The safety in excess of 400 USP units of vitamin d daily during pregnancy has not been established . The abnormalities observed are similar to the supravalvular aortic stenosis syndrome described in infants that is characterized by supravalvular aortic stenosis, elfin facies, and mental retardation .

In a nursing mother given large doses of vitamin D, 25-hydroxycholecalciferol appeared in the milk and caused hypercalcemia in her child. Caution is subsequently required when contemplating the use of vitamin d in a nursing woman, and the necessity of monitoring infants' serum calcium concentration if vitamin d is administered to a breastfeeding woman .

Adverse reactions associated with the use of vitamin d are primarily linked to having hypervitaminosis D occurring [FDA Lanel]. In particular, hypervitaminosis D is characterized by effects specific effects on specific organ systems. At the renal system, hypervitaminosis D can cause impairment of renal function with polyuria, nocturne, polydipsia, hypercalciuria, reversible asotemia, hypertension, nephrocalcinosis, generalized vascular calcification, or even irreversible renal insufficiency which may result in death . Elsewhere, hypervitaminosis D can also cause CNS mental retardation . At the level of soft tissues, it can widespread calcification of the soft tissues, including the heart, blood vessels, renal tubules, and lungs . In the skeletal system, bone demineralization (osteoporosis) in adults can occur while a decline in the average rate of linear growth and increased mineralization of bones, dwarfism, vague aches, stiffness, and weakness can occur in infants and children . Finally, hypervitaminosis D can also lead to nausea, anorexia, and constipation at the gastrointestinal level as well as mild acidosis, anemia, or weight loss via metabolic processes .

The LD(50) in animals is unknown .

There is no data available for effects in pregnancy, breast feeding, hepatic impairment, or renal impairment. However, it appears that the process of vitamin E elimination is strict and self regulating enough that vitamin E toxicity is exceedingly rare. Studies showing adverse effects from excess vitamin E generally involve people consuming more than 1000mg/day for weeks to months.

Precaution

Before instituting therapy with Niacin, an attempt should be made to control hyperlipidemia with appropriate diet, exercise, and weight reduction in obese patients and to treat other underlying medical problems. Patients with a past history of jaundice, hepatobiliary disease, or peptic ulcer should be observed closely during Niacin therapy. Frequent monitoring of liver function tests and blood glucose should be performed to ascertain that the drug is producing no adverse effects on these organ systems. Diabetic patients may experience a dose-related rise in glucose intolerance, the clinical significance of which is unclear. Diabetic or potentially diabetic patients should be observed closely. Adjustment of diet and/or hypoglycemic therapy may be necessary.

Caution should also be used when Niacin is used in patients with unstable angina or in the acute phase of MI, particularly when such patients are also receiving vasoactive drugs such as nitrates, calcium channel blockers or adrenergic blocking agents. Elevated uric acid levels have occurred with Niacin therapy, therefore use with caution in patients predisposed to gout. Niacin has been associated with small but statistically significant dose-related reductions in platelet count and increases in prothrombin time. Caution should be observed when Niacin is administered concomitantly with anticoagulants; prothrombin time and platelet counts should be monitored closely in such patients. Niacin has been associated with small but statistically significant, dose-related reductions in phosphorus levels (mean of -13% with 2000 mg). So phosphorus levels should be monitored periodically in patients at risk.

Cholestatic jaundice; fat-malabsorption conditions. Monitor patients closely for toxicity. Liver impairment and children.

Vitamin E may enhance the anticoagulant activity of anticoagulant drugs. Caution is advised in premature infants with high dose Vitamin E supplementation, because of reported risk of necrotizing enterocilitis.

Interaction

Niacin may potentiate the effects of ganglionic blocking agents and vasoactive drugs resulting in postural hypotension. Concomitant aspirin may decrease the metabolic clearance of nicotinic acid. The clinical relevance of this finding is unclear. About 98% of available Niacin was bound to colestipol, with 10 to 30% binding to cholestyramine. These results suggest that 4 to 6 hours, or as great an interval as possible, should elapse between the ingestion of bile acid-binding resins and the administration of Niacin.

Decreased absorption with neomycin. Increased risk of hypervitaminosis A with synthetic retinoids eg, acitretin, isotretinoin and tretinoin. Increased risk of toxicity when used with alcohol.

Vitamin E may impair the absorption of Vitamin A. Vitamin K functions impairement happens at the level of prothrombin formation and potentiates the effect of Warfarin.

Volume of Distribution

Data regarding the volume of distribution of niacin is not readily available.

0.41L/kg in premature neonates given a 20mg/kg intramuscular injection.

Elimination Route

Systemic - approximately 50%

In patients with chronic kidney disease, the Cmax is 0.06µg/mL for a 500mg oral dose, 2.42µg/mL for a 1000mg oral dose, and 4.22µg/mL for a 1500mg oral dose. The Tmax is 3.0 hours for a 1000mg or 1500mg oral dose. The AUC is 1.44µg*h/mL for a 500mg oral dose, 6.66µg*h/mL for a 1000mg oral dose, and 12.41µg*h/mL for a 1500mg oral dose. These values did not drastically differ in patients requiring dialysis.

Readily absorbed from the normal gastrointestinal tract

Vitamin D3 and D2 are readily absorbed from the small intestine (proximal or distal) .

10-33% of deuterium labelled vitamin E is absorbed in the small intestine. Absorption of Vitamin E is dependant upon absorption of the fat in which it is dissolved. For patients with poor fat absorption, a water soluble form of vitamin E may need to be substituted such as tocopheryl polyethylene glycol-1000 succinate.

In other studies the oral bioavailability of alpha-tocopherol was 36%, gamma-tocotrienol was 9%. The time to maximum concentration was 9.7 hours for alpha-tocopherol and 2.4 hours for gamma-tocotrienol.

Half Life

The half life of niacin is 0.9h, nicotinuric acid is 1.3h, and nicotinamide is 4.3h.

1.9 hours

Although certain studies suggest the half-life of 1,25-hydroxyvitamin D3 may be approximately 15 hours, the half-life of 25-hydroxyvitamin D3 appears to have a half-life of about 15 days . Intriguingly however, the half-lives of any particular administration of vitamin d can vary and in general the half-lives of vitamin D2 metabolites have been demonstrated to be shorter overall than vitamin D3 half-lives with this being affected by vitamin d binding protein concentrations and genotype in particular individuals .

44 hours in premature neonates given a 20mg/kg intramuscular injection. 12 minutes in intravenous injection of intestinal lymph.

Clearance

Data regarding the clearance of niacin is not readily available.

Some studies propose an estimated clearance rate for 1,25-dihydroxyvitamin D as 31 +/- 4 ml/min in healthy adults .

6.5mL/hr/kg in premature neonates given a 20mg/kg intramuscular injection.

Elimination Route

69.5% of a dose of niacin is recovered in urine. 37.9% of the recovered dose was N-methyl-2-pyridone-5-carboxamide, 16.0% was N-methylnicotinamide, 11.6% was nicotinuric acid, and 3.2% was niacin.

The primary excretion route of vitamin D is via the bile into the feces .

Alpha tocopherol is excreted in urine as well as bile in the feces mainly as a carboxyethyl-hydrochroman (CEHC) metabolite, but it can be excreted in it's natural form .

Pregnancy & Breastfeeding use

Niacin cannot be used in pregnancy and lactation because of a lack of information.

Pregnancy Category A. Adequate and well-controlled human studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).

Use in pregnancy: Vitamin E may be used in pregnancy in the normally recommended dose but the safety of high dose therapy has not been established.

Use in lactation: There appears to be no contraindication to breast feeding by mothers taking the normally recommended dose.

Contraindication

Niacin is contraindicated in patients with a known hypersensitivity to Niacin or any component of this medication, significant or unexplained hepatic dysfunction, active peptic ulcer disease or arterial bleeding.

Hypervitaminosis A; pregnancy (dose exceeding RDA).

No known contraindications found.

Special Warning

Use in Children: Vitamin E is safe for children

Acute Overdose

Supportive measures should be undertaken in the event of an overdosage. Symptoms may include nausea, dizziness, itching, vomiting, upset stomach, and flushing

Large doses of vitamin E (more than 1 gm/day) have been reported to increase bleeding tendency in vitamin K deficient patients such as those taking oral anticoagulants.

Storage Condition

Store at a cool and dry place, Protect from light and moisture.

Innovators Monograph

You find simplified version here Natures Plus Baby Plex


*** Taking medicines without doctor's advice can cause long-term problems.
Share