Pilosol

Pilosol Uses, Dosage, Side Effects, Food Interaction and all others data.

Dobesil is indicated for the treatment of hemorrhoidal syndrome, microcirculation disorders of arteovenous origin, clinical signs of chronic venous insufficiency in the lower limbs (pain, cramps, paresthesia, edema, stasis, dermotosis) and in the particular microangiopathy like diabetic retinopathy. It is also indicated in superficial thrombophlebitis as adjuvant therapy.

Commonly known as decadron, dexamethasone acetate is a glucocorticosteroid previously marketed in the USA for the treatment of inflammatory respiratory, allergic, autoimmune, and other conditions. Developed in 1957, dexamethasone is structurally similar to other corticosteroids such as hydrocortisone and prednisolone. Dexamethasone acetate has largely been replaced by dexamethasone phosphate and continues to be administered for a large variety of inflammatory conditions.

Recently, dexamethasone has been a drug of interest in the treatment of COVID-19. In a June 16 2020 press release highlighting early results of a clinical trial, Randomized Evaluation of COVID-19 Therapy (RECOVERY), it was reported that dexamethasone reduced COVID-19 deaths by approximately one-fifth and one-third in patients on oxygen therapy and mechanical ventilation, respectively. Dexamethasone was therefore recommended as a life-saving treatment for COVID-19 patients experiencing severe respiratory symptoms.

Lidocaine is an amide type local anaesth. It stabilises the neuronal membrane and inhibits Na ion movements, which are necessary for conduction of impulses. In the heart, lidocaine reduces depolarisation of the ventricles during diastole and automaticity in the His-Purkinje system. Duration of action potential and effective refractory period are also reduced.

Excessive blood levels of lidocaine can cause changes in cardiac output, total peripheral resistance, and mean arterial pressure . With central neural blockade these changes may be attributable to the block of autonomic fibers, a direct depressant effect of the local anesthetic agent on various components of the cardiovascular system, and/or the beta-adrenergic receptor stimulating action of epinephrine when present . The net effect is normally a modest hypotension when the recommended dosages are not exceeded .

In particular, such cardiac effects are likely associated with the principal effect that lidocaine elicits when it binds and blocks sodium channels, inhibiting the ionic fluxes required for the initiation and conduction of electrical action potential impulses necessary to facilitate muscle contraction . Subsequently, in cardiac myocytes, lidocaine can potentially block or otherwise slow the rise of cardiac action potentials and their associated cardiac myocyte contractions, resulting in possible effects like hypotension, bradycardia, myocardial depression, cardiac arrhythmias, and perhaps cardiac arrest or circulatory collapse .

Moreover, lidocaine possesses a dissociation constant (pKa) of 7.7 and is considered a weak base . As a result, about 25% of lidocaine molecules will be un-ionized and available at the physiological pH of 7.4 to translocate inside nerve cells, which means lidocaine elicits an onset of action more rapidly than other local anesthetics that have higher pKa values . This rapid onset of action is demonstrated in about one minute following intravenous injection and fifteen minutes following intramuscular injection . The administered lidocaine subsequently spreads rapidly through the surrounding tissues and the anesthetic effect lasts approximately ten to twenty minutes when given intravenously and about sixty to ninety minutes after intramuscular injection .

Trade Name Pilosol
Generic Calcium Dobesilate + Lidocaine + Dexamethasone Acetate
Weight 4%+2%+025%
Type Rectal Ointment
Therapeutic Class Drugs used in Ano-rectal region
Manufacturer Ziska Pharmaceuticals Ltd,
Available Country Bangladesh
Last Updated: September 19, 2023 at 7:00 am
Pilosol
Pilosol

Uses

Calcium Dobesilate, Lidocaine HCl & Dexamethasone Acetate Ointment is used for the treatment of internal and external hemorrhoids, anal pruritus, anal eczema, anitis, perianitis, cryptitis, papillitis, acute hemorrhoidal thrombosis and anal fissures. It is also used for the treatment of pre-and postoperative hemorrhoidectomy.

Pilosol is also used to associated treatment for these conditions: Candida Albicans Vulvovaginitis, Dermatitis, Fungal Vaginal Infections, Corticosteroid therapyAcute Otitis Media, Anal Fissures, Anorectal discomfort, Arrhythmia, Back Pain Lower Back, Bacterial Vaginosis (BV), Burns, Cervical Syndrome, Earache, Hemorrhoids, Infection, Inflammatory Reaction caused by ear infection-not otherwise specified, Insect Bites, Joint Pain, Mixed Vaginal Infections, Multiple Myeloma (MM), Myringitis, Neuritis, Osteolysis caused by Bone Tumors, Osteoporosis, Otitis Externa, Pain caused by ear infection-not otherwise specified, Pain, Inflammatory, Post-Herpetic Neuralgia (PHN), Postherpetic Neuralgia, Primary Hyperparathyroidism, Rheumatic Diseases, Rheumatic Joint Disease, Sciatica, Skin Irritation, Soft Tissue Inflammation, Sore Throat, Sunburn, Susceptible infections, Trichomonas Vaginitis, Ulcers, Leg, Urethral Strictures, Vulvovaginal Candidiasis, Abrasions, Anal discomfort, Arrhythmia of ventricular origin, Cutaneous lesions, Gum pain, Minor burns, Superficial Wounds, Susceptible Bacterial Infections, Ulceration of the mouth, Viral infections of the external ear canal, Post Myocardial Infarction Treatment, Regional Anesthesia, Local anesthesia therapy

How Pilosol works

Lidocaine is a local anesthetic of the amide type . It is used to provide local anesthesia by nerve blockade at various sites in the body . It does so by stabilizing the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses, thereby effecting local anesthetic action . In particular, the lidocaine agent acts on sodium ion channels located on the internal surface of nerve cell membranes . At these channels, neutral uncharged lidocaine molecules diffuse through neural sheaths into the axoplasm where they are subsequently ionized by joining with hydrogen ions . The resultant lidocaine cations are then capable of reversibly binding the sodium channels from the inside, keeping them locked in an open state that prevents nerve depolarization . As a result, with sufficient blockage, the membrane of the postsynaptic neuron will ultimately not depolarize and will thus fail to transmit an action potential . This facilitates an anesthetic effect by not merely preventing pain signals from propagating to the brain but by aborting their generation in the first place .

In addition to blocking conduction in nerve axons in the peripheral nervous system, lidocaine has important effects on the central nervous system and cardiovascular system . After absorption, lidocaine may cause stimulation of the CNS followed by depression and in the cardiovascular system, it acts primarily on the myocardium where it may produce decreases in electrical excitability, conduction rate, and force of contraction .

Dosage

Pilosol dosage

Calcium Dobesilate, Lidocaine & Dexamethasone Acetate Ointment should be applied 2-3 times daily preferably in the morning and at bedtime, if possible apply after defecation.

In the case of internal hemorrhoids apply the ointment by applicator. 

In cases of external hemorrhoids and anal pruritus, apply a thin layer of the ointment several times a day. The duration of the treatment is generally of some days. The physician’s must be informed if, after 1 to 2 weeks of treatment the symptomatology has not improved or has worsened.

For internal use:

  • Before use remove the cap from the tube
  • Pierce the tube membrane by inverting the cap
  • Attach the applicator (supplied) to the tube
  • Squeeze the tube to fill applicator and lubricate the tip with ointment for smooth insertion
  • Insert the applicator gently and to full extend into the anus and squeeze once again from the end of the tube to force the required amount of ointment into the anal canal
  • Remove the applicator after application and discard it
  • Try not to have a defecation for a couple of hours after an internal application
For external use:
  • Squeeze the tube of ointment and apply a small amount to the finger
  • Apply the ointment around the outside of the anus with finger
  • Wash the hands thoroughly with warm water and soap after each application
  • Reattach the cap to tube

Side Effects

Rarely gastrointestinal disorders including nausea and diarrhea, skin reactions, fever, articular pain and in very rare cases agranulocytosis have been reported. These reactions are generally spontaneously reversible after treatment withdrawal.

Arrhythmia, bradycardia, arterial spasms, CV collapse, oedema, flushing, hert block, hypotension, sinus node suppression, agitation, anxiety, coma, confusion, drowsiness, hallucinations, euphoria, headache, hyperaesthesia, hypoaesthesia, lightheadedness, lethargy, nervousness, psychosis, seizure, slurred speech, unconsciousness, somnolence, nausea, vomiting, metallic taste, tinnitus, disorientation, dizziness, paraesthesia, resp depression and convulsions. Patch: Bruising, depigmentation, petechiae, irritation. Ophth: Conjunctival hyperaemia, corneal epithelial changes, diplopia,visual changes.

Toxicity

Symptoms of overdose and/or acute systemic toxicity involves central nervous system toxicity that presents with symptoms of increasing severity . Patients may present initially with circumoral paraesthesia, numbness of the tongue, light-headedness, hyperacusis, and tinnitus . Visual disturbance and muscular tremors or muscle twitching are more serious and precede the onset of generalized convulsions . These signs must not be mistaken for neurotic behavior . Unconsciousness and grand mal convulsions may follow, which may last from a few seconds to several minutes . Hypoxia and hypercapnia occur rapidly following convulsions due to increased muscular activity, together with the interference with normal respiration and loss of the airway . In severe cases, apnoea may occur. Acidosis increases the toxic effects of local anesthetics . Effects on the cardiovascular system may be seen in severe cases . Hypotension, bradycardia, arrhythmia and cardiac arrest may occur as a result of high systemic concentrations, with potentially fatal outcome .

Pregnancy Category B has been established for the use of lidocaine in pregnancy, although there are no formal, adequate, and well-controlled studies in pregnant women . General consideration should be given to this fact before administering lidocaine to women of childbearing potential, especially during early pregnancy when maximum organogenesis takes place . Ultimately, although animal studies have revealed no evidence of harm to the fetus, lidocaine should not be administered during early pregnancy unless the benefits are considered to outweigh the risks . Lidocaine readily crosses the placental barrier after epidural or intravenous administration to the mother . The ratio of umbilical to maternal venous concentration is 0.5 to 0.6 . The fetus appears to be capable of metabolizing lidocaine at term . The elimination half-life in the newborn of the drug received in utero is about three hours, compared with 100 minutes in the adult . Elevated lidocaine levels may persist in the newborn for at least 48 hours after delivery . Fetal bradycardia or tachycardia, neonatal bradycardia, hypotonia or respiratory depression may occur .

Local anesthetics rapidly cross the placenta and when used for epidural, paracervical, pudendal or caudal block anesthesia, can cause varying degrees of maternal, fetal and neonatal toxicity . The potential for toxicity depends upon the procedure performed, the type and amount of drug used, and the technique of drug administration . Adverse reactions in the parturient, fetus and neonate involve alterations of the central nervous system, peripheral vascular tone, and cardiac function .

Maternal hypotension has resulted from regional anesthesia . Local anesthetics produce vasodilation by blocking sympathetic nerves . Elevating the patient’s legs and positioning her on her left side will help prevent decreases in blood pressure . The fetal heart rate also should be monitored continuously, and electronic fetal monitoring is highly advisable .

Epidural, spinal, paracervical, or pudendal anesthesia may alter the forces of parturition through changes in uterine contractility or maternal expulsive efforts . In one study, paracervical block anesthesia was associated with a decrease in the mean duration of first stage labor and facilitation of cervical dilation . However, spinal and epidural anesthesia have also been reported to prolong the second stage of labor by removing the parturient’s reflex urge to bear down or by interfering with motor function . The use of obstetrical anesthesia may increase the need for forceps assistance .

The use of some local anesthetic drug products during labor and delivery may be followed by diminished muscle strength and tone for the first day or two of life . The long-term significance of these observations is unknown . Fetal bradycardia may occur in 20 to 30 percent of patients receiving paracervical nerve block anesthesia with the amide-type local anesthetics and may be associated with fetal acidosis . Fetal heart rate should always be monitored during paracervical anesthesia . The physician should weigh the possible advantages against risks when considering a paracervical block in prematurity, toxemia of pregnancy, and fetal distress . Careful adherence to the recommended dosage is of the utmost importance in obstetrical paracervical block . Failure to achieve adequate analgesia with recommended doses should arouse suspicion of intravascular or fetal intracranial injection . Cases compatible with unintended fetal intracranial injection of local anesthetic solution have been reported following intended paracervical or pudendal block or both. Babies so affected present with unexplained neonatal depression at birth, which correlates with high local anesthetic serum levels, and often manifest seizures within six hours . Prompt use of supportive measures combined with forced urinary excretion of the local anesthetic has been used successfully to manage this complication .

It is not known whether this drug is excreted in human milk . Because many drugs are excreted in human milk, caution should be exercised when lidocaine is administered to a nursing woman .

Dosages in children should be reduced, commensurate with age, body weight and physical condition .

The oral LD 50 of lidocaine HCl in non-fasted female rats is 459 (346-773) mg/kg (as the salt) and 214 (159-324) mg/kg (as the salt) in fasted female rats .

Precaution

Dosage should be reduced in case of severe renal insufficiency requiring dialysis. In patient with agranulocytosis, this medication can decrease the number of white blood cells which affect the body’s ability to fight against various infections. If patients experience flu-like symptoms such as cough, sore throat, fever and others, they are advised to seek medical care as soon as possible.

Patient with pseudocholinesterase deficiency, resp depression. Hepatic and renal impairment. Elderly or debilitated patients. Pregnancy and lactation.

Interaction

No interaction is known up to now.Side effects: Very rare cases have been reported like modification of the intestinal transit, temporary burning sensation, local pain. Hypersensitivity reactions together with skin reactions and/or fever can occur. These reactions can be of allergic origin and, if it is the case, the treatment must be discontinued.

Volume of Distribution

The volume of distribution determined for lidocaine is 0.7 to 1.5 L/kg .

In particular, lidocaine is distributed throughout the total body water . Its rate of disappearance from the blood can be described by a two or possibly even three-compartment model . There is a rapid disappearance (alpha phase) which is believed to be related to uptake by rapidly equilibrating tissues (tissues with high vascular perfusion, for example) . The slower phase is related to distribution to slowly equilibrating tissues (beta phase) and to its metabolism and excretion (gamma phase) .

Lidocaine's distribution is ultimately throughout all body tissues . In general, the more highly perfused organs will show higher concentrations of the agent . The highest percentage of this drug will be found in skeletal muscle, mainly due to the mass of muscle rather than an affinity .

Elimination Route

In general, lidocaine is readily absorbed across mucous membranes and damaged skin but poorly through intact skin . The agent is quickly absorbed from the upper airway, tracheobronchial tree, and alveoli into the bloodstream . And although lidocaine is also well absorbed across the gastrointestinal tract the oral bioavailability is only about 35% as a result of a high degree of first-pass metabolism . After injection into tissues, lidocaine is also rapidly absorbed and the absorption rate is affected by both vascularity and the presence of tissue and fat capable of binding lidocaine in the particular tissues .

The concentration of lidocaine in the blood is subsequently affected by a variety of aspects, including its rate of absorption from the site of injection, the rate of tissue distribution, and the rate of metabolism and excretion . Subsequently, the systemic absorption of lidocaine is determined by the site of injection, the dosage given, and its pharmacological profile . The maximum blood concentration occurs following intercostal nerve blockade followed in order of decreasing concentration, the lumbar epidural space, brachial plexus site, and subcutaneous tissue . The total dose injected regardless of the site is the primary determinant of the absorption rate and blood levels achieved . There is a linear relationship between the amount of lidocaine injected and the resultant peak anesthetic blood levels .

Nevertheless, it has been observed that lidocaine hydrochloride is completely absorbed following parenteral administration, its rate of absorption depending also on lipid solubility and the presence or absence of a vasoconstrictor agent . Except for intravascular administration, the highest blood levels are obtained following intercostal nerve block and the lowest after subcutaneous administration .

Additionally, lidocaine crosses the blood-brain and placental barriers, presumably by passive diffusion .

Half Life

The elimination half-life of lidocaine hydrochloride following an intravenous bolus injection is typically 1.5 to 2.0 hours . Because of the rapid rate at which lidocaine hydrochloride is metabolized, any condition that affects liver function may alter lidocaine HCl kinetics . The half-life may be prolonged two-fold or more in patients with liver dysfunction .

Clearance

The mean systemic clearance observed for intravenously administered lidocaine in a study of 15 adults was approximately 0.64 +/- 0.18 L/min .

Elimination Route

The excretion of unchanged lidocaine and its metabolites occurs predominantly via the kidney with less than 5% in the unchanged form appearing in the urine . The renal clearance is inversely related to its protein binding affinity and the pH of the urine . This suggests by the latter that excretion of lidocaine occurs by non-ionic diffusion .

Pregnancy & Breastfeeding use

Studies in pregnant women or animals are not available and, in humans it is not known whether calcium dobesilate crosses the placental barrier. On the other hand, after topical administration lidocaine hydrochloride and dexamethasone acetate are resorbed in variable quantities and can have systemic effects. Moreover, both substances cross the placental barrier. In these conditions, these drug should be administered during pregnancy only if the potential benefit justifies the potential risk to the fetus. After oral administration, calcium dobesilate is excreted in the maternal milk in low amounts, but it is not known whether this is the case with local use. After topical administration, lidocaine hydrochloride and dexamethasone acetate are excreted in the maternal milk. As a precaution either the treatment or the breast-feeding should be stopped.

Contraindication

Calcium Dobesilate, Lidocaine HCl and Dexamethasone Acetate ointment is contraindicated in patients with hypersensitivity to Calcium Dobesilate, Lidocaine HCl and Dexamethasone Acetate. Precautions: In case of renal insufficiency the use of this ointment should be limited to a few days. Long-lasting treatment should be avoided.

Special Warning

Hepatic Impairment Parenteral: Dosage reduction may be needed.

Acute Overdose

The clinical signs of a possible over dosage are not known.

Storage Condition

Store in a cool and dry place, protected from light.

Innovators Monograph

You find simplified version here Pilosol


*** Taking medicines without doctor's advice can cause long-term problems.
Share